|
import os |
|
import io |
|
import random |
|
import requests |
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
API_TOKEN = os.getenv("HF_TOKEN") |
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} |
|
timeout = 100 |
|
|
|
|
|
def split_image(input_image, num_splits=4): |
|
output_images = [] |
|
box_size = 512 |
|
coordinates = [ |
|
(0, 0, box_size, box_size), |
|
(box_size, 0, 1024, box_size), |
|
(0, box_size, box_size, 1024), |
|
(box_size, box_size, 1024, 1024) |
|
] |
|
|
|
|
|
for box in coordinates: |
|
output_images.append(input_image.crop(box)) |
|
|
|
return output_images |
|
|
|
|
|
|
|
|
|
def export_to_gif(images, output_path, fps=4): |
|
|
|
duration = int(1000 / fps) |
|
|
|
|
|
images[0].save( |
|
output_path, |
|
save_all=True, |
|
append_images=images[1:], |
|
duration=duration, |
|
loop=0 |
|
) |
|
|
|
|
|
def predict(prompt, seed=-1, randomize_seed=True, guidance_scale=3.5, num_inference_steps=28, lora_id="black-forest-labs/FLUX.1-dev", progress=gr.Progress(track_tqdm=True)): |
|
prompt_template = f"""a 2x2 total 4 grid of frames, showing consecutive stills from a looped gif of {prompt}""" |
|
|
|
if lora_id.strip() == "" or lora_id == None: |
|
lora_id = "black-forest-labs/FLUX.1-dev" |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
key = random.randint(0, 999) |
|
|
|
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip() |
|
|
|
API_TOKEN = random.choice([os.getenv("HF_TOKEN")]) |
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} |
|
|
|
payload = { |
|
"inputs": prompt_template, |
|
"steps": num_inference_steps, |
|
"cfg_scale": guidance_scale, |
|
"seed": seed, |
|
} |
|
|
|
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) |
|
if response.status_code != 200: |
|
print(f"Error: Failed to get image. Response status: {response.status_code}") |
|
print(f"Response content: {response.text}") |
|
if response.status_code == 503: |
|
raise gr.Error(f"{response.status_code} : The model is being loaded") |
|
raise gr.Error(f"{response.status_code}") |
|
|
|
try: |
|
image_bytes = response.content |
|
image = Image.open(io.BytesIO(image_bytes)) |
|
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') |
|
|
|
split_images = split_image(image, num_splits=4) |
|
|
|
|
|
gif_path = "output.gif" |
|
|
|
|
|
export_to_gif(split_images, gif_path, fps=4) |
|
return gif_path, image, seed |
|
except Exception as e: |
|
print(f"Error when trying to open the image: {e}") |
|
return None |
|
|
|
|
|
demo = gr.Interface(fn=predict, inputs="text", outputs="image") |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
#stills{max-height:160px} |
|
""" |
|
examples = [ |
|
"a cat waving its paws in the air", |
|
"a panda moving their hips from side to side", |
|
"a flower going through the process of blooming" |
|
] |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("# Walone Gif Generator. Gif Animation ပုံထုတ်စနစ်") |
|
gr.Markdown("Create GIFs with Walone. Based on Fux Model.") |
|
gr.Markdown("Add LoRA (if needed) in Advanced Settings. For better results, include a description of the motion in your prompt.") |
|
|
|
|
|
|
|
with gr.Row(): |
|
prompt = gr.Text(label="Prompt", show_label=False, max_lines=4, show_copy_button = True, placeholder="Enter your prompt", container=False) |
|
submit = gr.Button("Submit", scale=0) |
|
|
|
output = gr.Image(label="GIF", show_label=False) |
|
output_stills = gr.Image(label="stills", show_label=False, elem_id="stills") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux") |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=15, |
|
step=0.1, |
|
value=3.5, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
fn=predict, |
|
inputs=[prompt], |
|
outputs=[output, output_stills, seed], |
|
cache_examples="lazy" |
|
) |
|
gr.on( |
|
triggers=[submit.click, prompt.submit], |
|
fn=predict, |
|
inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps, custom_lora], |
|
outputs = [output, output_stills, seed] |
|
) |
|
|
|
demo.launch() |