import os import io import random import requests import gradio as gr import numpy as np from PIL import Image MAX_SEED = np.iinfo(np.int32).max API_TOKEN = os.getenv("HF_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} timeout = 100 def split_image(input_image, num_splits=4): output_images = [] box_size = 512 # Each split image will be 512x512 coordinates = [ (0, 0, box_size, box_size), # Top-left (box_size, 0, 1024, box_size), # Top-right (0, box_size, box_size, 1024), # Bottom-left (box_size, box_size, 1024, 1024) # Bottom-right ] # Crop each region using predefined coordinates for box in coordinates: output_images.append(input_image.crop(box)) return output_images # Function to export split images to GIF def export_to_gif(images, output_path, fps=4): # Calculate duration per frame in milliseconds based on fps duration = int(1000 / fps) # Create a GIF from the list of images images[0].save( output_path, save_all=True, append_images=images[1:], duration=duration, # Duration between frames loop=0 # Loop forever ) def predict(prompt, seed=-1, randomize_seed=True, guidance_scale=3.5, num_inference_steps=28, lora_id="black-forest-labs/FLUX.1-dev", progress=gr.Progress(track_tqdm=True)): prompt_template = f"""a 2x2 total 4 grid of frames, showing consecutive stills from a looped gif of {prompt}""" if lora_id.strip() == "" or lora_id == None: lora_id = "black-forest-labs/FLUX.1-dev" if randomize_seed: seed = random.randint(0, MAX_SEED) key = random.randint(0, 999) API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip() API_TOKEN = random.choice([os.getenv("HF_TOKEN")]) headers = {"Authorization": f"Bearer {API_TOKEN}"} payload = { "inputs": prompt_template, "steps": num_inference_steps, "cfg_scale": guidance_scale, "seed": seed, } response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) if response.status_code != 200: print(f"Error: Failed to get image. Response status: {response.status_code}") print(f"Response content: {response.text}") if response.status_code == 503: raise gr.Error(f"{response.status_code} : The model is being loaded") raise gr.Error(f"{response.status_code}") try: image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') split_images = split_image(image, num_splits=4) # Path to save the GIF gif_path = "output.gif" # Export the split images to GIF export_to_gif(split_images, gif_path, fps=4) return gif_path, image, seed except Exception as e: print(f"Error when trying to open the image: {e}") return None demo = gr.Interface(fn=predict, inputs="text", outputs="image") css=""" #col-container { margin: 0 auto; max-width: 520px; } #stills{max-height:160px} """ examples = [ "a cat waving its paws in the air", "a panda moving their hips from side to side", "a flower going through the process of blooming" ] with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# Walone Gif Generator. Gif Animation ပုံထုတ်စနစ်") gr.Markdown("Create GIFs with Walone. Based on Fux Model.") gr.Markdown("Add LoRA (if needed) in Advanced Settings. For better results, include a description of the motion in your prompt.") # gr.Markdown("For better results include a description of the motion in your prompt") # with gr.Row(): # with gr.Column(): with gr.Row(): prompt = gr.Text(label="Prompt", show_label=False, max_lines=4, show_copy_button = True, placeholder="Enter your prompt", container=False) submit = gr.Button("Submit", scale=0) output = gr.Image(label="GIF", show_label=False) output_stills = gr.Image(label="stills", show_label=False, elem_id="stills") with gr.Accordion("Advanced Settings", open=False): custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux") seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples=examples, fn=predict, inputs=[prompt], outputs=[output, output_stills, seed], cache_examples="lazy" ) gr.on( triggers=[submit.click, prompt.submit], fn=predict, inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps, custom_lora], outputs = [output, output_stills, seed] ) demo.launch()