import gradio as gr import requests import os import json class AutonomousEmailAgent: def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin): self.linkedin_url = linkedin_url self.company_name = company_name self.role = role self.word_limit = word_limit self.user_name = user_name self.email = email self.phone = phone self.linkedin = linkedin self.bio = None self.skills = [] self.experiences = [] self.company_info = None self.role_description = None self.attempts = 0 def fetch_linkedin_data(self): proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") if not self.linkedin_url: print("Action: No LinkedIn URL provided, using default bio.") self.bio = "A professional with diverse experience." self.skills = ["Adaptable", "Hardworking"] self.experiences = ["Worked across various industries"] else: print("Action: Fetching LinkedIn data via Proxycurl.") headers = {"Authorization": f"Bearer {proxycurl_api_key}"} url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}" response = requests.get(url, headers=headers) if response.status_code == 200: data = response.json() self.bio = data.get("summary", "No bio available") self.skills = data.get("skills", []) self.experiences = data.get("experiences", []) print("LinkedIn data fetched successfully.") else: print("Error: Unable to fetch LinkedIn profile. Status Code:", response.status_code) self.use_default_profile() def use_default_profile(self): print("Using default profile values.") self.bio = "A professional with a versatile background and extensive experience." self.skills = ["Leadership", "Communication", "Problem-solving"] self.experiences = [{"title": "Project Manager"}, {"title": "Team Leader"}] def run(self): self.fetch_linkedin_data() return self.autonomous_reasoning() def autonomous_reasoning(self): print("Autonomous Reasoning: Letting the LLM fully reason and act on available data...") reasoning_prompt = f""" You are an AI agent tasked with generating a job application email using Simon Sinek's Start with Why model. The email must begin with why the candidate is passionate about the role, then explain how their skills and experience align with the company and role, and finally describe specific achievements that demonstrate their capabilities. The email must not exceed {self.word_limit} words but should remain coherent and complete. Here’s the current data: - LinkedIn profile: {self.linkedin_url} - Company Name: {self.company_name} - Role: {self.role} - Candidate's Bio: {self.bio} - Candidate's Skills: {', '.join(self.skills)} - Candidate's Experiences: {', '.join([exp['title'] for exp in self.experiences])} Generate a fully coherent and complete email that fits within the word limit. """ return self.send_request_to_llm(reasoning_prompt) def send_request_to_llm(self, prompt): print("Sending request to Groq Cloud LLM...") api_key = os.getenv("GROQ_API_KEY") if not api_key: print("Error: API key not found. Please set the GROQ_API_KEY environment variable.") return "Error: API key not found." headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } data = { "model": "llama-3.1-70b-versatile", "messages": [{"role": "user", "content": prompt}] } response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data) print(f"Status Code: {response.status_code}") if response.status_code == 200: try: result = response.json() print(f"LLM Response: {json.dumps(result, indent=2)}") choices = result.get("choices", []) if choices and "message" in choices[0]: content = choices[0]["message"]["content"] print(f"Content: {content}") return self.format_email(content) else: print("Error: Unrecognized format in LLM response.") return "Error: Unrecognized response format." except json.JSONDecodeError: print("Error: Response from Groq Cloud LLM is not valid JSON.") return "Error: Response is not in JSON format." else: print(f"Error: Unable to connect to Groq Cloud LLM. Status Code: {response.status_code}") return "Error: Unable to generate response." def format_email(self, llm_response): # Split the response into paragraphs for better formatting paragraphs = [line.strip() for line in llm_response.split("\n") if line.strip()] formatted_email = "\n\n".join(paragraphs) # Add the closing section with a call to action closing_section = ( "\n\nI would appreciate the opportunity to discuss how my background, skills, and passion align with the goals " f"of {self.company_name}. I am eager to contribute to your mission and support the development of future leaders.\n\n" "Thank you for considering my application. I look forward to the possibility of discussing this role further.\n" ) # Prepare the signature signature = ( f"Best regards,\n" f"{self.user_name}\n" f"Email: {self.email}\n" f"Phone: {self.phone}\n" f"LinkedIn: {self.linkedin}" ) # Ensure only one "Best regards" section and remove any duplicate signatures if "Best regards" in formatted_email: formatted_email = formatted_email.split("Best regards")[0].strip() return f"{formatted_email}{closing_section}\n{signature}" # Gradio UI setup remains unchanged def gradio_ui(): name_input = gr.Textbox(label="Your Name", placeholder="Enter your name") company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL") role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for") email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address") phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number") linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL") word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150) email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10) def create_email(name, company_name, role, email, phone, linkedin_url, word_limit): agent = AutonomousEmailAgent(linkedin_url, company_name, role, word_limit, name, email, phone, linkedin_url) return agent.run() demo = gr.Interface( fn=create_email, inputs=[name_input, company_input, role_input, email_input, phone_input, linkedin_input, word_limit_slider], outputs=[email_output], title="Email Writing AI Agent with ReAct", description="Generate a professional email for a job application using LinkedIn data, company info, and role description.", allow_flagging="never" ) demo.launch() if __name__ == "__main__": gradio_ui()