File size: 5,916 Bytes
e0c7c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9baab76
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from ipywidgets import fixed
import gradio as gr
from skimage import img_as_ubyte
from config import Config
from decomposition import get_or_compute
from models import get_instrumented_model
import imageio
from PIL import Image
import ipywidgets as widgets
import numpy as np
import PIL
import torch
from IPython.utils import io
import nltk
nltk.download('wordnet')

# @title Load Model
selected_model = 'lookbook'

# Load model

# Speed up computation
torch.autograd.set_grad_enabled(False)
torch.backends.cudnn.benchmark = True

# Specify model to use
config = Config(
    model='StyleGAN2',
    layer='style',
    output_class=selected_model,
    components=80,
    use_w=True,
    batch_size=5_000,  # style layer quite small
)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

inst = get_instrumented_model(config.model, config.output_class,
                              config.layer, torch.device(device), use_w=config.use_w)

path_to_components = get_or_compute(config, inst)

model = inst.model

comps = np.load(path_to_components)
lst = comps.files
latent_dirs = []
latent_stdevs = []

load_activations = False

for item in lst:
    if load_activations:
        if item == 'act_comp':
            for i in range(comps[item].shape[0]):
                latent_dirs.append(comps[item][i])
        if item == 'act_stdev':
            for i in range(comps[item].shape[0]):
                latent_stdevs.append(comps[item][i])
    else:
        if item == 'lat_comp':
            for i in range(comps[item].shape[0]):
                latent_dirs.append(comps[item][i])
        if item == 'lat_stdev':
            for i in range(comps[item].shape[0]):
                latent_stdevs.append(comps[item][i])


def mix_w(w1, w2, content, style):
    for i in range(0, 5):
        w2[i] = w1[i] * (1 - content) + w2[i] * content

    for i in range(5, 16):
        w2[i] = w1[i] * (1 - style) + w2[i] * style

    return w2


def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
    # blockPrint()
    model.truncation = truncation
    if w is None:
        w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
        w = [w]*model.get_max_latents()  # one per layer
    else:
        w = [np.expand_dims(x, 0) for x in w]

    for l in range(start, end):
        for i in range(len(directions)):
            w[l] = w[l] + directions[i] * distances[i] * scale

    torch.cuda.empty_cache()
    # save image and display
    out = model.sample_np(w)
    final_im = Image.fromarray(
        (out * 255).astype(np.uint8)).resize((500, 500), Image.LANCZOS)

    if save is not None:
        if disp == False:
            print(save)
        final_im.save(f'out/{seed}_{save:05}.png')
    if disp:
        display(final_im)

    return final_im


# @title Demo UI


def generate_image(seed1, seed2, content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer):
    seed1 = int(seed1)
    seed2 = int(seed2)

    scale = 1
    params = {'c0': c0,
              'c1': c1,
              'c2': c2,
              'c3': c3,
              'c4': c4,
              'c5': c5,
              'c6': c6}

    param_indexes = {'c0': 0,
                     'c1': 1,
                     'c2': 2,
                     'c3': 3,
                     'c4': 4,
                     'c5': 5,
                     'c6': 6}

    directions = []
    distances = []
    for k, v in params.items():
        directions.append(latent_dirs[param_indexes[k]])
        distances.append(v)

    w1 = model.sample_latent(1, seed=seed1).detach().cpu().numpy()
    w1 = [w1]*model.get_max_latents()  # one per layer
    im1 = model.sample_np(w1)

    w2 = model.sample_latent(1, seed=seed2).detach().cpu().numpy()
    w2 = [w2]*model.get_max_latents()  # one per layer
    im2 = model.sample_np(w2)
    combined_im = np.concatenate([im1, im2], axis=1)
    input_im = Image.fromarray((combined_im * 255).astype(np.uint8))

    mixed_w = mix_w(w1, w2, content, style)
    return input_im, display_sample_pytorch(seed1, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=mixed_w, disp=False)


truncation = gr.inputs.Slider(
    minimum=0, maximum=1, default=0.5, label="Truncation")
start_layer = gr.inputs.Number(default=3, label="Start Layer")
end_layer = gr.inputs.Number(default=14, label="End Layer")
seed1 = gr.inputs.Number(default=0, label="Seed 1")
seed2 = gr.inputs.Number(default=0, label="Seed 2")
content = gr.inputs.Slider(
    label="Structure", minimum=0, maximum=1, default=0.5)
style = gr.inputs.Slider(label="Style", minimum=0, maximum=1, default=0.5)

slider_max_val = 20
slider_min_val = -20
slider_step = 1

c0 = gr.inputs.Slider(label="Sleeve & Size",
                      minimum=slider_min_val, maximum=slider_max_val, default=0)
c1 = gr.inputs.Slider(label="Dress - Jacket",
                      minimum=slider_min_val, maximum=slider_max_val, default=0)
c2 = gr.inputs.Slider(
    label="Female Coat", minimum=slider_min_val, maximum=slider_max_val, default=0)
c3 = gr.inputs.Slider(label="Coat", minimum=slider_min_val,
                      maximum=slider_max_val, default=0)
c4 = gr.inputs.Slider(label="Graphics", minimum=slider_min_val,
                      maximum=slider_max_val, default=0)
c5 = gr.inputs.Slider(label="Dark", minimum=slider_min_val,
                      maximum=slider_max_val, default=0)
c6 = gr.inputs.Slider(label="Less Cleavage",
                      minimum=slider_min_val, maximum=slider_max_val, default=0)


scale = 1

inputs = [seed1, seed2, content, style, truncation,
          c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer]
description = "Change the seed number to generate different parent design."

gr.Interface(generate_image, inputs, [
             "image", "image"], description=description, live=True, title="").launch()