Spaces:
Runtime error
Runtime error
import paddle | |
import gradio as gr | |
from paddlenlp.transformers import (UnifiedTransformerLMHeadModel, | |
UnifiedTransformerTokenizer) | |
from paddlespeech.cli.asr.infer import ASRExecutor | |
from paddlespeech.cli.tts.infer import TTSExecutor | |
asr = ASRExecutor() | |
tts = TTSExecutor() | |
# warmup ASR and TTS | |
print(tts(text=asr("zh.wav", force_yes=True))) | |
model_name_or_path = 'plato-mini' | |
model = UnifiedTransformerLMHeadModel.from_pretrained(model_name_or_path) | |
tokenizer = UnifiedTransformerTokenizer.from_pretrained(model_name_or_path) | |
model.eval() | |
def chat(audio, history): | |
message = asr(audio, force_yes=True) | |
history = history or [] | |
history_input = [text for round in history for text in round] | |
history_input.append(message) | |
inputs = tokenizer.dialogue_encode(history_input, | |
add_start_token_as_response=True, | |
return_tensors=True, | |
is_split_into_words=False) | |
inputs['input_ids'] = inputs['input_ids'].astype('int64') | |
ids, scores = model.generate( | |
input_ids=inputs['input_ids'], | |
token_type_ids=inputs['token_type_ids'], | |
position_ids=inputs['position_ids'], | |
attention_mask=inputs['attention_mask'], | |
decode_strategy="sampling", | |
num_return_sequences=5, | |
top_p=0.95) | |
index = paddle.argmax(scores) | |
response = tokenizer.decode(ids[index], skip_special_tokens=True).replace(" ", "") | |
history.append((message, response)) | |
output_file = tts(text=response, output="output.wav") | |
return output_file, history, history | |
demo = gr.Interface( | |
chat, | |
inputs=[ | |
gr.Audio(source="microphone", type="filepath"), | |
"state"], | |
outputs=[ | |
gr.Audio(type="filepath"), | |
gr.Chatbot().style(color_map=("green", "pink")), | |
"state" | |
], | |
allow_flagging="never", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |