Sijun He
commited on
Commit
•
48d79f7
1
Parent(s):
03e08e7
upload spaces
Browse files- .gitattributes +1 -0
- app.py +18 -0
- char_tokenizer.py +53 -0
- poet-gpt2.ipynb +1502 -0
- requirements.txt +3 -0
- saved_model/.DS_Store +3 -0
- saved_model/config.json +3 -0
- saved_model/pytorch_model.bin +3 -0
- saved_model/tokenizer.json +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
saved_model/pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from char_tokenizer import CharTokenizer
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import GPT2LMHeadModel
|
4 |
+
|
5 |
+
tokenizer = CharTokenizer.load("saved_model/tokenizer.json")
|
6 |
+
model = GPT2LMHeadModel.from_pretrained("saved_model")
|
7 |
+
def generation(prompt, length):
|
8 |
+
tokens = tokenizer(prompt=str(length) + prompt)
|
9 |
+
output_ids = model.generate(tokens['input_ids'],
|
10 |
+
do_sample=True,
|
11 |
+
top_p=0.95,
|
12 |
+
max_length=100)
|
13 |
+
decoded_verse = tokenizer.decode(output_ids)[len(prompt) + 1:]
|
14 |
+
return decoded_verse
|
15 |
+
|
16 |
+
input_prompt = gr.inputs.Textbox()
|
17 |
+
input_length = gr.inputs.Dropdown([5, 6, 7])
|
18 |
+
gr.Interface(fn=generation, inputs=[input_prompt, input_length], outputs="text").launch()
|
char_tokenizer.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, json
|
2 |
+
|
3 |
+
class CharTokenizer:
|
4 |
+
def __init__(self, corpus=None, vocab=None):
|
5 |
+
if vocab is not None:
|
6 |
+
self.vocab = vocab
|
7 |
+
elif corpus is not None:
|
8 |
+
self.vocab = self._build_vocab(corpus)
|
9 |
+
else:
|
10 |
+
raise Exception("Either corpus or vocab has to be supplied")
|
11 |
+
self.id2vocab = [char for char, index in sorted(self.vocab.items(), key=lambda item: item[1])]
|
12 |
+
|
13 |
+
def _tokenize(self, text):
|
14 |
+
return list(text)
|
15 |
+
|
16 |
+
def __call__(self, prompt, text=None, add_eos_token=False):
|
17 |
+
token_ids = [self.vocab.get(token, 0) for token in self._tokenize(prompt)]
|
18 |
+
if text is not None:
|
19 |
+
text_token_ids = [self.vocab.get(token, 0) for token in self._tokenize(text)]
|
20 |
+
token_ids = token_ids + [self.vocab["<bos>"]] + text_token_ids
|
21 |
+
if add_eos_token:
|
22 |
+
token_ids = token_ids + [self.vocab["<eos>"]]
|
23 |
+
input_ids_tensor = torch.tensor(token_ids, dtype=torch.long).unsqueeze(0)
|
24 |
+
attention_masks = torch.ones_like(input_ids_tensor)
|
25 |
+
return {"input_ids": input_ids_tensor, "attention_mask": attention_masks}
|
26 |
+
|
27 |
+
def _build_vocab(self, corpus):
|
28 |
+
vocab = {"<pad>": 0}
|
29 |
+
for verse_lengths in range(3, 10):
|
30 |
+
vocab[str(verse_lengths)] = len(vocab)
|
31 |
+
for doc in corpus:
|
32 |
+
chars = self._tokenize(doc)
|
33 |
+
for char in chars:
|
34 |
+
if char not in vocab:
|
35 |
+
vocab[char] = len(vocab)
|
36 |
+
vocab["<bos>"] = len(vocab)
|
37 |
+
vocab["<eos>"] = len(vocab)
|
38 |
+
return vocab
|
39 |
+
|
40 |
+
def decode(self, token_ids):
|
41 |
+
chars = [self.id2vocab[token_id] for token_id in token_ids.flatten().tolist()]
|
42 |
+
filtered_chars = [char for char in chars if char not in ["<eos>", "<bos>", "<pad>"]]
|
43 |
+
return "".join(filtered_chars)
|
44 |
+
|
45 |
+
def save(self, filepath):
|
46 |
+
with open(filepath, "w") as f:
|
47 |
+
json.dump(self.vocab, f)
|
48 |
+
|
49 |
+
@classmethod
|
50 |
+
def load(cls, filepath):
|
51 |
+
with open(filepath) as f:
|
52 |
+
vocab = json.load(f)
|
53 |
+
return cls(vocab=vocab)
|
poet-gpt2.ipynb
ADDED
@@ -0,0 +1,1502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "2c3bb18a",
|
7 |
+
"metadata": {
|
8 |
+
"execution": {
|
9 |
+
"iopub.execute_input": "2022-04-18T01:49:05.484451Z",
|
10 |
+
"iopub.status.busy": "2022-04-18T01:49:05.482966Z",
|
11 |
+
"iopub.status.idle": "2022-04-18T01:49:22.249321Z",
|
12 |
+
"shell.execute_reply": "2022-04-18T01:49:22.248692Z",
|
13 |
+
"shell.execute_reply.started": "2022-04-16T12:16:29.630467Z"
|
14 |
+
},
|
15 |
+
"papermill": {
|
16 |
+
"duration": 16.788107,
|
17 |
+
"end_time": "2022-04-18T01:49:22.249468",
|
18 |
+
"exception": false,
|
19 |
+
"start_time": "2022-04-18T01:49:05.461361",
|
20 |
+
"status": "completed"
|
21 |
+
},
|
22 |
+
"tags": []
|
23 |
+
},
|
24 |
+
"outputs": [
|
25 |
+
{
|
26 |
+
"name": "stdout",
|
27 |
+
"output_type": "stream",
|
28 |
+
"text": [
|
29 |
+
"Cloning into 'Poetry'...\n",
|
30 |
+
"remote: Enumerating objects: 135, done.\u001b[K\n",
|
31 |
+
"remote: Total 135 (delta 0), reused 0 (delta 0), pack-reused 135\u001b[K\n",
|
32 |
+
"Receiving objects: 100% (135/135), 123.55 MiB | 12.33 MiB/s, done.\n",
|
33 |
+
"Resolving deltas: 100% (77/77), done.\n",
|
34 |
+
"Updating files: 100% (39/39), done.\n"
|
35 |
+
]
|
36 |
+
}
|
37 |
+
],
|
38 |
+
"source": [
|
39 |
+
"#!wget https://raw.githubusercontent.com/youyuge34/Poems_generator_Keras/master/dataset/poetry.txt\n",
|
40 |
+
"!git clone https://github.com/Werneror/Poetry.git"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": 2,
|
46 |
+
"id": "d76b15a8",
|
47 |
+
"metadata": {
|
48 |
+
"execution": {
|
49 |
+
"iopub.execute_input": "2022-04-18T01:49:22.322907Z",
|
50 |
+
"iopub.status.busy": "2022-04-18T01:49:22.322113Z",
|
51 |
+
"iopub.status.idle": "2022-04-18T01:49:28.965795Z",
|
52 |
+
"shell.execute_reply": "2022-04-18T01:49:28.965246Z",
|
53 |
+
"shell.execute_reply.started": "2022-04-16T12:16:41.322744Z"
|
54 |
+
},
|
55 |
+
"papermill": {
|
56 |
+
"duration": 6.678735,
|
57 |
+
"end_time": "2022-04-18T01:49:28.965944",
|
58 |
+
"exception": false,
|
59 |
+
"start_time": "2022-04-18T01:49:22.287209",
|
60 |
+
"status": "completed"
|
61 |
+
},
|
62 |
+
"tags": []
|
63 |
+
},
|
64 |
+
"outputs": [],
|
65 |
+
"source": [
|
66 |
+
"import os\n",
|
67 |
+
"import pandas as pd\n",
|
68 |
+
"from sklearn.model_selection import train_test_split\n",
|
69 |
+
"from transformers import GPT2Config, GPT2LMHeadModel\n",
|
70 |
+
"from transformers import TrainingArguments, Trainer"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": 3,
|
76 |
+
"id": "de8c9caa",
|
77 |
+
"metadata": {
|
78 |
+
"execution": {
|
79 |
+
"iopub.execute_input": "2022-04-18T01:49:29.041708Z",
|
80 |
+
"iopub.status.busy": "2022-04-18T01:49:29.040006Z",
|
81 |
+
"iopub.status.idle": "2022-04-18T01:49:34.168753Z",
|
82 |
+
"shell.execute_reply": "2022-04-18T01:49:34.169341Z",
|
83 |
+
"shell.execute_reply.started": "2022-04-16T12:16:48.16115Z"
|
84 |
+
},
|
85 |
+
"papermill": {
|
86 |
+
"duration": 5.16885,
|
87 |
+
"end_time": "2022-04-18T01:49:34.169515",
|
88 |
+
"exception": false,
|
89 |
+
"start_time": "2022-04-18T01:49:29.000665",
|
90 |
+
"status": "completed"
|
91 |
+
},
|
92 |
+
"tags": []
|
93 |
+
},
|
94 |
+
"outputs": [
|
95 |
+
{
|
96 |
+
"data": {
|
97 |
+
"text/html": [
|
98 |
+
"<div>\n",
|
99 |
+
"<style scoped>\n",
|
100 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
101 |
+
" vertical-align: middle;\n",
|
102 |
+
" }\n",
|
103 |
+
"\n",
|
104 |
+
" .dataframe tbody tr th {\n",
|
105 |
+
" vertical-align: top;\n",
|
106 |
+
" }\n",
|
107 |
+
"\n",
|
108 |
+
" .dataframe thead th {\n",
|
109 |
+
" text-align: right;\n",
|
110 |
+
" }\n",
|
111 |
+
"</style>\n",
|
112 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
113 |
+
" <thead>\n",
|
114 |
+
" <tr style=\"text-align: right;\">\n",
|
115 |
+
" <th></th>\n",
|
116 |
+
" <th>题目</th>\n",
|
117 |
+
" <th>朝代</th>\n",
|
118 |
+
" <th>作者</th>\n",
|
119 |
+
" <th>内容</th>\n",
|
120 |
+
" </tr>\n",
|
121 |
+
" </thead>\n",
|
122 |
+
" <tbody>\n",
|
123 |
+
" <tr>\n",
|
124 |
+
" <th>0</th>\n",
|
125 |
+
" <td>彭生行</td>\n",
|
126 |
+
" <td>明</td>\n",
|
127 |
+
" <td>何景明</td>\n",
|
128 |
+
" <td>岷峨山根江水坼,万里波涛混吴越。倾湖倒海不可量,仰看一线青天上。郁蓝秀色盘三巴,间产锦石兼丹...</td>\n",
|
129 |
+
" </tr>\n",
|
130 |
+
" <tr>\n",
|
131 |
+
" <th>1</th>\n",
|
132 |
+
" <td>黄河篇</td>\n",
|
133 |
+
" <td>明</td>\n",
|
134 |
+
" <td>何景明</td>\n",
|
135 |
+
" <td>黄河昆崙源,九曲与天通。银汉贯箕尾,左盘日月宫。奔流下龙门,喷薄沙海风。三山万里倚穷发,鳖极...</td>\n",
|
136 |
+
" </tr>\n",
|
137 |
+
" <tr>\n",
|
138 |
+
" <th>2</th>\n",
|
139 |
+
" <td>三清山人歌</td>\n",
|
140 |
+
" <td>明</td>\n",
|
141 |
+
" <td>何景明</td>\n",
|
142 |
+
" <td>山人佩剑冠远游,腰间鞶囊垂虎头,七星照耀金银钩。东行策杖指卢霍,逝将沧海寻丹丘。三清西南龙虎...</td>\n",
|
143 |
+
" </tr>\n",
|
144 |
+
" <tr>\n",
|
145 |
+
" <th>3</th>\n",
|
146 |
+
" <td>昔游篇</td>\n",
|
147 |
+
" <td>明</td>\n",
|
148 |
+
" <td>何景明</td>\n",
|
149 |
+
" <td>三星烂夜河汉流,觞行瑟作中堂幽。李君勿叹息,薛��且停讴。英英孟夫子,听我当筵歌昔游。昔游少年...</td>\n",
|
150 |
+
" </tr>\n",
|
151 |
+
" <tr>\n",
|
152 |
+
" <th>4</th>\n",
|
153 |
+
" <td>赠商三</td>\n",
|
154 |
+
" <td>明</td>\n",
|
155 |
+
" <td>何景明</td>\n",
|
156 |
+
" <td>去冬雪雨留蓟门,开筵谑浪倒金樽。今春灯火到长安,过门不肯回银鞍。燕山花隔平山柳,马上东风几回首。</td>\n",
|
157 |
+
" </tr>\n",
|
158 |
+
" </tbody>\n",
|
159 |
+
"</table>\n",
|
160 |
+
"</div>"
|
161 |
+
],
|
162 |
+
"text/plain": [
|
163 |
+
" 题目 朝代 作者 内容\n",
|
164 |
+
"0 彭生行 明 何景明 岷峨山根江水坼,万里波涛混吴越。倾湖倒海不可量,仰看一线青天上。郁蓝秀色盘三巴,间产锦石兼丹...\n",
|
165 |
+
"1 黄河篇 明 何景明 黄河昆崙源,九曲与天通。银汉贯箕尾,左盘日月宫。奔流下龙门,喷薄沙海风。三山万里倚穷发,鳖极...\n",
|
166 |
+
"2 三清山人歌 明 何景明 山人佩剑冠远游,腰间鞶囊垂虎头,七星照耀金银钩。东行策杖指卢霍,逝将沧海寻丹丘。三清西南龙虎...\n",
|
167 |
+
"3 昔游篇 明 何景明 三星烂夜河汉流,觞行瑟作中堂幽。李君勿叹息,薛君且停讴。英英孟夫子,听我当筵歌昔游。昔游少年...\n",
|
168 |
+
"4 赠商三 明 何景明 去冬雪雨留蓟门,开筵谑浪倒金樽。今春灯火到长安,过门不肯回银鞍。燕山花隔平山柳,马上东风几回首。"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
"execution_count": 3,
|
172 |
+
"metadata": {},
|
173 |
+
"output_type": "execute_result"
|
174 |
+
}
|
175 |
+
],
|
176 |
+
"source": [
|
177 |
+
"data = None\n",
|
178 |
+
"for (dirpath, dirnames, filenames) in os.walk(\"Poetry\"):\n",
|
179 |
+
" for filename in filenames:\n",
|
180 |
+
" if filename.endswith(\"csv\"):\n",
|
181 |
+
" cur_data = pd.read_csv(f\"Poetry/{filename}\")\n",
|
182 |
+
" if data is None:\n",
|
183 |
+
" data = cur_data\n",
|
184 |
+
" else:\n",
|
185 |
+
" data = pd.concat([data, cur_data])\n",
|
186 |
+
"data.head()"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "code",
|
191 |
+
"execution_count": 4,
|
192 |
+
"id": "40c84fbf",
|
193 |
+
"metadata": {
|
194 |
+
"execution": {
|
195 |
+
"iopub.execute_input": "2022-04-18T01:49:34.242596Z",
|
196 |
+
"iopub.status.busy": "2022-04-18T01:49:34.241754Z",
|
197 |
+
"iopub.status.idle": "2022-04-18T01:49:34.244196Z",
|
198 |
+
"shell.execute_reply": "2022-04-18T01:49:34.243782Z",
|
199 |
+
"shell.execute_reply.started": "2022-04-16T12:16:53.639047Z"
|
200 |
+
},
|
201 |
+
"papermill": {
|
202 |
+
"duration": 0.041531,
|
203 |
+
"end_time": "2022-04-18T01:49:34.244315",
|
204 |
+
"exception": false,
|
205 |
+
"start_time": "2022-04-18T01:49:34.202784",
|
206 |
+
"status": "completed"
|
207 |
+
},
|
208 |
+
"tags": []
|
209 |
+
},
|
210 |
+
"outputs": [],
|
211 |
+
"source": [
|
212 |
+
"import re\n",
|
213 |
+
"\n",
|
214 |
+
"def verse_length(verses):\n",
|
215 |
+
" return len(verses[0])\n",
|
216 |
+
"\n",
|
217 |
+
"def verse_heads(verses):\n",
|
218 |
+
" verse_heads = [verse[0] for verse in verses]\n",
|
219 |
+
" return \"\".join(verse_heads)\n",
|
220 |
+
"\n",
|
221 |
+
"def split_poem(poem):\n",
|
222 |
+
" return [verse for verse in re.split(\",|。\", poem) if len(verse)]\n",
|
223 |
+
" \n",
|
224 |
+
"def is_correct_length(poem, max_length, min_length):\n",
|
225 |
+
" return len(poem) < max_length and len(poem) > min_length\n",
|
226 |
+
" \n",
|
227 |
+
"def is_equal_length(verses):\n",
|
228 |
+
" verse_lengths = [len(verse) for verse in verses]\n",
|
229 |
+
" for length in verse_lengths:\n",
|
230 |
+
" if length != verse_lengths[0]:\n",
|
231 |
+
" return False\n",
|
232 |
+
" return True "
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"execution_count": 5,
|
238 |
+
"id": "4fd4df65",
|
239 |
+
"metadata": {
|
240 |
+
"execution": {
|
241 |
+
"iopub.execute_input": "2022-04-18T01:49:34.407430Z",
|
242 |
+
"iopub.status.busy": "2022-04-18T01:49:34.406391Z",
|
243 |
+
"iopub.status.idle": "2022-04-18T01:49:47.517219Z",
|
244 |
+
"shell.execute_reply": "2022-04-18T01:49:47.516725Z",
|
245 |
+
"shell.execute_reply.started": "2022-04-16T12:16:53.648455Z"
|
246 |
+
},
|
247 |
+
"papermill": {
|
248 |
+
"duration": 13.240486,
|
249 |
+
"end_time": "2022-04-18T01:49:47.517350",
|
250 |
+
"exception": false,
|
251 |
+
"start_time": "2022-04-18T01:49:34.276864",
|
252 |
+
"status": "completed"
|
253 |
+
},
|
254 |
+
"tags": []
|
255 |
+
},
|
256 |
+
"outputs": [
|
257 |
+
{
|
258 |
+
"name": "stderr",
|
259 |
+
"output_type": "stream",
|
260 |
+
"text": [
|
261 |
+
"/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n",
|
262 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
263 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
264 |
+
"\n",
|
265 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
266 |
+
" \n",
|
267 |
+
"/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
|
268 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
269 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
270 |
+
"\n",
|
271 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
272 |
+
" import sys\n"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"name": "stdout",
|
277 |
+
"output_type": "stream",
|
278 |
+
"text": [
|
279 |
+
"Number of valid poems: 617674\n"
|
280 |
+
]
|
281 |
+
}
|
282 |
+
],
|
283 |
+
"source": [
|
284 |
+
"data = data[~data[\"内容\"].isna()]\n",
|
285 |
+
"data['verses'] = [split_poem(poem) for poem in data['内容']]\n",
|
286 |
+
"data['equal_verse_lengths'] = [is_equal_length(verses) for verses in data['verses']]\n",
|
287 |
+
"data['meet_length_requirements'] = [is_correct_length(poem, 100, 20) for poem in data['内容']]\n",
|
288 |
+
"valid_poems = data[data['equal_verse_lengths'] & data['meet_length_requirements']]\n",
|
289 |
+
"valid_poems['verse_lengths'] = [verse_length(verses) for verses in valid_poems['verses']]\n",
|
290 |
+
"valid_poems['verse_heads'] = [verse_heads(verses) for verses in valid_poems['verses']]\n",
|
291 |
+
"valid_poems = valid_poems[valid_poems['verse_lengths'] < 10]\n",
|
292 |
+
"print(f\"Number of valid poems: {len(valid_poems)}\")"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": 6,
|
298 |
+
"id": "f86c5f9c",
|
299 |
+
"metadata": {
|
300 |
+
"execution": {
|
301 |
+
"iopub.execute_input": "2022-04-18T01:49:47.589515Z",
|
302 |
+
"iopub.status.busy": "2022-04-18T01:49:47.588746Z",
|
303 |
+
"iopub.status.idle": "2022-04-18T01:49:47.601086Z",
|
304 |
+
"shell.execute_reply": "2022-04-18T01:49:47.600657Z",
|
305 |
+
"shell.execute_reply.started": "2022-04-16T12:17:06.029609Z"
|
306 |
+
},
|
307 |
+
"papermill": {
|
308 |
+
"duration": 0.049888,
|
309 |
+
"end_time": "2022-04-18T01:49:47.601199",
|
310 |
+
"exception": false,
|
311 |
+
"start_time": "2022-04-18T01:49:47.551311",
|
312 |
+
"status": "completed"
|
313 |
+
},
|
314 |
+
"tags": []
|
315 |
+
},
|
316 |
+
"outputs": [
|
317 |
+
{
|
318 |
+
"data": {
|
319 |
+
"text/html": [
|
320 |
+
"<div>\n",
|
321 |
+
"<style scoped>\n",
|
322 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
323 |
+
" vertical-align: middle;\n",
|
324 |
+
" }\n",
|
325 |
+
"\n",
|
326 |
+
" .dataframe tbody tr th {\n",
|
327 |
+
" vertical-align: top;\n",
|
328 |
+
" }\n",
|
329 |
+
"\n",
|
330 |
+
" .dataframe thead th {\n",
|
331 |
+
" text-align: right;\n",
|
332 |
+
" }\n",
|
333 |
+
"</style>\n",
|
334 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
335 |
+
" <thead>\n",
|
336 |
+
" <tr style=\"text-align: right;\">\n",
|
337 |
+
" <th></th>\n",
|
338 |
+
" <th>题目</th>\n",
|
339 |
+
" <th>朝代</th>\n",
|
340 |
+
" <th>作者</th>\n",
|
341 |
+
" <th>内容</th>\n",
|
342 |
+
" <th>verses</th>\n",
|
343 |
+
" <th>equal_verse_lengths</th>\n",
|
344 |
+
" <th>meet_length_requirements</th>\n",
|
345 |
+
" <th>verse_lengths</th>\n",
|
346 |
+
" <th>verse_heads</th>\n",
|
347 |
+
" </tr>\n",
|
348 |
+
" </thead>\n",
|
349 |
+
" <tbody>\n",
|
350 |
+
" <tr>\n",
|
351 |
+
" <th>4</th>\n",
|
352 |
+
" <td>赠商三</td>\n",
|
353 |
+
" <td>明</td>\n",
|
354 |
+
" <td>何景明</td>\n",
|
355 |
+
" <td>去冬雪雨留蓟门,开筵谑浪倒金樽。今春灯火到长安,过门不肯回银鞍。燕山花隔平山柳,马上东风几回首。</td>\n",
|
356 |
+
" <td>[去冬雪雨留蓟门, 开筵谑浪倒金樽, 今春灯火到长安, 过门不肯回银鞍, 燕山花隔平山柳, ...</td>\n",
|
357 |
+
" <td>True</td>\n",
|
358 |
+
" <td>True</td>\n",
|
359 |
+
" <td>7</td>\n",
|
360 |
+
" <td>去开今过燕马</td>\n",
|
361 |
+
" </tr>\n",
|
362 |
+
" <tr>\n",
|
363 |
+
" <th>14</th>\n",
|
364 |
+
" <td>送叶生还闽中兼怀郑继之</td>\n",
|
365 |
+
" <td>明</td>\n",
|
366 |
+
" <td>何景明</td>\n",
|
367 |
+
" <td>叶生行吟燕中市,葛巾麻鞋岁将晚。两都为客今始归,五岳寻仙不辞远。江南画舸春柳低,海上茅堂白云...</td>\n",
|
368 |
+
" <td>[叶生行吟燕中市, 葛巾麻鞋岁将晚, 两都为客今始归, 五岳寻仙不辞远, 江南画舸春柳低, ...</td>\n",
|
369 |
+
" <td>True</td>\n",
|
370 |
+
" <td>True</td>\n",
|
371 |
+
" <td>7</td>\n",
|
372 |
+
" <td>叶葛两五江海谷为</td>\n",
|
373 |
+
" </tr>\n",
|
374 |
+
" <tr>\n",
|
375 |
+
" <th>15</th>\n",
|
376 |
+
" <td>送林利正同知之潮阳</td>\n",
|
377 |
+
" <td>明</td>\n",
|
378 |
+
" <td>何景明</td>\n",
|
379 |
+
" <td>忆在成均共携手,泉山门下相知久。万里恩情若父兄,十年道义惭师友。君才岂孤一第名,佩刀今作岭南...</td>\n",
|
380 |
+
" <td>[忆在成均共携手, 泉山门下相知久, 万里恩情若父兄, 十年道义惭师友, 君才岂孤一第名, ...</td>\n",
|
381 |
+
" <td>True</td>\n",
|
382 |
+
" <td>True</td>\n",
|
383 |
+
" <td>7</td>\n",
|
384 |
+
" <td>忆泉万十君佩挂伐燕相过道</td>\n",
|
385 |
+
" </tr>\n",
|
386 |
+
" <tr>\n",
|
387 |
+
" <th>16</th>\n",
|
388 |
+
" <td>金陵歌送李先生</td>\n",
|
389 |
+
" <td>明</td>\n",
|
390 |
+
" <td>何景明</td>\n",
|
391 |
+
" <td>李公为舅有吕甥,甥舅四海皆知名。吕君关西昨日去,公自金陵来复行。金陵江水无断绝,金陵之山高巀...</td>\n",
|
392 |
+
" <td>[李公为舅有吕甥, 甥舅四海皆知名, 吕君关西昨日去, 公自金陵来复行, 金陵江水无断绝, ...</td>\n",
|
393 |
+
" <td>True</td>\n",
|
394 |
+
" <td>True</td>\n",
|
395 |
+
" <td>7</td>\n",
|
396 |
+
" <td>李甥吕公金金龙星白清燕</td>\n",
|
397 |
+
" </tr>\n",
|
398 |
+
" <tr>\n",
|
399 |
+
" <th>21</th>\n",
|
400 |
+
" <td>延津歌送韩令</td>\n",
|
401 |
+
" <td>明</td>\n",
|
402 |
+
" <td>何景明</td>\n",
|
403 |
+
" <td>延津寇过馀少男,延津县令莫停骖。双凫直向黄河北,一雁先飞清卫南。黄河岸边不种麦,浊浪滔天多贾...</td>\n",
|
404 |
+
" <td>[延津寇过馀少男, 延津县令莫停骖, 双凫直向黄河北, 一雁先飞清卫南, 黄河岸边不种麦, ...</td>\n",
|
405 |
+
" <td>True</td>\n",
|
406 |
+
" <td>True</td>\n",
|
407 |
+
" <td>7</td>\n",
|
408 |
+
" <td>延延双一黄浊城县</td>\n",
|
409 |
+
" </tr>\n",
|
410 |
+
" </tbody>\n",
|
411 |
+
"</table>\n",
|
412 |
+
"</div>"
|
413 |
+
],
|
414 |
+
"text/plain": [
|
415 |
+
" 题目 朝代 作者 内容 \\\n",
|
416 |
+
"4 赠商三 明 何景明 去冬雪雨留蓟门,开筵谑浪倒金樽。今春灯火到长安,过门不肯回银鞍。燕山花隔平山柳,马上东风几回首。 \n",
|
417 |
+
"14 送叶生还闽中兼怀郑继之 明 何景明 叶生行吟燕中市,葛巾麻鞋岁将晚。两都为客今始归,五岳寻仙不辞远。江南画舸春柳低,海上茅堂白云... \n",
|
418 |
+
"15 送林利正同知之潮阳 明 何景明 忆在成均共携手,泉山门下相知久。万里恩情若父兄,十年道义惭师友。君才岂孤一第名,佩刀今作岭南... \n",
|
419 |
+
"16 金陵歌送李先生 明 何景明 李公为舅有吕甥,甥舅四海皆知名。吕君关西昨日去,公自金陵来复行。金陵江水无断绝,金陵之山高巀... \n",
|
420 |
+
"21 延津歌送韩令 明 何景明 延津寇过馀少男,延津县令莫停骖。双凫直向黄河北,一雁先飞清卫南。黄河岸边不种麦,浊浪滔天多贾... \n",
|
421 |
+
"\n",
|
422 |
+
" verses equal_verse_lengths \\\n",
|
423 |
+
"4 [去冬雪雨留蓟门, 开筵谑浪倒金樽, 今春灯火到长安, 过门不肯回银鞍, 燕山花隔平山柳, ... True \n",
|
424 |
+
"14 [叶生行吟燕中市, 葛巾麻鞋岁将晚, 两都为客今始归, 五岳寻仙不辞远, 江南画舸春柳低, ... True \n",
|
425 |
+
"15 [忆在成均共携手, 泉山门下相知久, 万里恩情若父兄, 十年道义惭师友, 君才岂孤一第名, ... True \n",
|
426 |
+
"16 [李公为舅有吕甥, 甥舅四海皆知名, 吕君关西昨日去, 公自金陵来复行, 金陵江水无断绝, ... True \n",
|
427 |
+
"21 [延津寇过馀少男, 延津县令莫停骖, 双凫直向黄河北, 一雁先飞清卫南, 黄河岸边不种麦, ... True \n",
|
428 |
+
"\n",
|
429 |
+
" meet_length_requirements verse_lengths verse_heads \n",
|
430 |
+
"4 True 7 去开今过燕马 \n",
|
431 |
+
"14 True 7 叶葛两五江海谷为 \n",
|
432 |
+
"15 True 7 忆泉万十君佩挂伐燕相过道 \n",
|
433 |
+
"16 True 7 李甥吕公金金龙星白清燕 \n",
|
434 |
+
"21 True 7 延延双一黄浊城县 "
|
435 |
+
]
|
436 |
+
},
|
437 |
+
"execution_count": 6,
|
438 |
+
"metadata": {},
|
439 |
+
"output_type": "execute_result"
|
440 |
+
}
|
441 |
+
],
|
442 |
+
"source": [
|
443 |
+
"valid_poems.head()"
|
444 |
+
]
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"cell_type": "code",
|
448 |
+
"execution_count": 7,
|
449 |
+
"id": "33140481",
|
450 |
+
"metadata": {
|
451 |
+
"execution": {
|
452 |
+
"iopub.execute_input": "2022-04-18T01:49:47.695680Z",
|
453 |
+
"iopub.status.busy": "2022-04-18T01:49:47.694684Z",
|
454 |
+
"iopub.status.idle": "2022-04-18T01:49:47.696696Z",
|
455 |
+
"shell.execute_reply": "2022-04-18T01:49:47.697169Z",
|
456 |
+
"shell.execute_reply.started": "2022-04-16T12:23:28.401922Z"
|
457 |
+
},
|
458 |
+
"papermill": {
|
459 |
+
"duration": 0.06126,
|
460 |
+
"end_time": "2022-04-18T01:49:47.697307",
|
461 |
+
"exception": false,
|
462 |
+
"start_time": "2022-04-18T01:49:47.636047",
|
463 |
+
"status": "completed"
|
464 |
+
},
|
465 |
+
"tags": []
|
466 |
+
},
|
467 |
+
"outputs": [],
|
468 |
+
"source": [
|
469 |
+
"import torch, json\n",
|
470 |
+
"\n",
|
471 |
+
"class CharTokenizer:\n",
|
472 |
+
" def __init__(self, corpus=None, vocab=None):\n",
|
473 |
+
" if vocab is not None:\n",
|
474 |
+
" self.vocab = vocab\n",
|
475 |
+
" elif corpus is not None:\n",
|
476 |
+
" self.vocab = self._build_vocab(corpus)\n",
|
477 |
+
" else:\n",
|
478 |
+
" raise Exception(\"Either corpus or vocab has to be supplied\")\n",
|
479 |
+
" self.id2vocab = [char for char, index in sorted(self.vocab.items(), key=lambda item: item[1])]\n",
|
480 |
+
" \n",
|
481 |
+
" def _tokenize(self, text):\n",
|
482 |
+
" return list(text)\n",
|
483 |
+
" \n",
|
484 |
+
" def __call__(self, prompt, text=None, add_eos_token=False):\n",
|
485 |
+
" token_ids = [self.vocab.get(token, 0) for token in self._tokenize(prompt)]\n",
|
486 |
+
" if text is not None:\n",
|
487 |
+
" text_token_ids = [self.vocab.get(token, 0) for token in self._tokenize(text)]\n",
|
488 |
+
" token_ids = token_ids + [self.vocab[\"<bos>\"]] + text_token_ids\n",
|
489 |
+
" if add_eos_token:\n",
|
490 |
+
" token_ids = token_ids + [self.vocab[\"<eos>\"]]\n",
|
491 |
+
" input_ids_tensor = torch.tensor(token_ids, dtype=torch.long).unsqueeze(0)\n",
|
492 |
+
" attention_masks = torch.ones_like(input_ids_tensor)\n",
|
493 |
+
" return {\"input_ids\": input_ids_tensor, \"attention_mask\": attention_masks}\n",
|
494 |
+
" \n",
|
495 |
+
" def _build_vocab(self, corpus):\n",
|
496 |
+
" vocab = {\"<pad>\": 0}\n",
|
497 |
+
" for verse_lengths in range(3, 10):\n",
|
498 |
+
" vocab[str(verse_lengths)] = len(vocab)\n",
|
499 |
+
" for doc in corpus:\n",
|
500 |
+
" chars = self._tokenize(doc)\n",
|
501 |
+
" for char in chars:\n",
|
502 |
+
" if char not in vocab:\n",
|
503 |
+
" vocab[char] = len(vocab)\n",
|
504 |
+
" vocab[\"<bos>\"] = len(vocab)\n",
|
505 |
+
" vocab[\"<eos>\"] = len(vocab)\n",
|
506 |
+
" return vocab\n",
|
507 |
+
" \n",
|
508 |
+
" def decode(self, token_ids):\n",
|
509 |
+
" chars = [self.id2vocab[token_id] for token_id in token_ids.flatten().tolist()]\n",
|
510 |
+
" filtered_chars = [char for char in chars if char not in [\"<eos>\", \"<bos>\", \"<pad>\"]]\n",
|
511 |
+
" return \"\".join(filtered_chars)\n",
|
512 |
+
" \n",
|
513 |
+
" def save(self, filepath):\n",
|
514 |
+
" with open(filepath, \"w\") as f:\n",
|
515 |
+
" json.dump(self.vocab, f)\n",
|
516 |
+
" \n",
|
517 |
+
" @classmethod\n",
|
518 |
+
" def load(cls, filepath):\n",
|
519 |
+
" with open(filepath) as f:\n",
|
520 |
+
" vocab = json.load(f)\n",
|
521 |
+
" return cls(vocab=vocab)"
|
522 |
+
]
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"cell_type": "code",
|
526 |
+
"execution_count": 8,
|
527 |
+
"id": "73f55174",
|
528 |
+
"metadata": {
|
529 |
+
"execution": {
|
530 |
+
"iopub.execute_input": "2022-04-18T01:49:47.806040Z",
|
531 |
+
"iopub.status.busy": "2022-04-18T01:49:47.795805Z",
|
532 |
+
"iopub.status.idle": "2022-04-18T01:49:51.506784Z",
|
533 |
+
"shell.execute_reply": "2022-04-18T01:49:51.506307Z",
|
534 |
+
"shell.execute_reply.started": "2022-04-16T12:23:28.57419Z"
|
535 |
+
},
|
536 |
+
"papermill": {
|
537 |
+
"duration": 3.770368,
|
538 |
+
"end_time": "2022-04-18T01:49:51.506972",
|
539 |
+
"exception": false,
|
540 |
+
"start_time": "2022-04-18T01:49:47.736604",
|
541 |
+
"status": "completed"
|
542 |
+
},
|
543 |
+
"tags": []
|
544 |
+
},
|
545 |
+
"outputs": [],
|
546 |
+
"source": [
|
547 |
+
"tokenizer = CharTokenizer(valid_poems['内容'])\n",
|
548 |
+
"tokenizer.save(\"/kaggle/working/tokenizer.json\")"
|
549 |
+
]
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"cell_type": "code",
|
553 |
+
"execution_count": 9,
|
554 |
+
"id": "2d0c4b52",
|
555 |
+
"metadata": {
|
556 |
+
"execution": {
|
557 |
+
"iopub.execute_input": "2022-04-18T01:49:51.587046Z",
|
558 |
+
"iopub.status.busy": "2022-04-18T01:49:51.578743Z",
|
559 |
+
"iopub.status.idle": "2022-04-18T01:50:13.120701Z",
|
560 |
+
"shell.execute_reply": "2022-04-18T01:50:13.121126Z",
|
561 |
+
"shell.execute_reply.started": "2022-04-16T12:35:45.273336Z"
|
562 |
+
},
|
563 |
+
"papermill": {
|
564 |
+
"duration": 21.579069,
|
565 |
+
"end_time": "2022-04-18T01:50:13.121274",
|
566 |
+
"exception": false,
|
567 |
+
"start_time": "2022-04-18T01:49:51.542205",
|
568 |
+
"status": "completed"
|
569 |
+
},
|
570 |
+
"tags": []
|
571 |
+
},
|
572 |
+
"outputs": [
|
573 |
+
{
|
574 |
+
"name": "stdout",
|
575 |
+
"output_type": "stream",
|
576 |
+
"text": [
|
577 |
+
"123\n"
|
578 |
+
]
|
579 |
+
}
|
580 |
+
],
|
581 |
+
"source": [
|
582 |
+
"tokenized_dataset = [tokenizer(prompt = str(length) + heads, text=poem, add_eos_token=True) for poem, length, heads in zip(valid_poems['内容'],\n",
|
583 |
+
" valid_poems['verse_lengths'],\n",
|
584 |
+
" valid_poems['verse_heads'])]\n",
|
585 |
+
"train_dataset, val_dataset = train_test_split(tokenized_dataset, test_size=0.02, random_state=1234)\n",
|
586 |
+
"max_lengths = max([tokenized[\"input_ids\"].size(1) for tokenized in tokenized_dataset])\n",
|
587 |
+
"print(max_lengths)"
|
588 |
+
]
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"cell_type": "code",
|
592 |
+
"execution_count": 10,
|
593 |
+
"id": "a4e831ab",
|
594 |
+
"metadata": {
|
595 |
+
"execution": {
|
596 |
+
"iopub.execute_input": "2022-04-18T01:50:13.232157Z",
|
597 |
+
"iopub.status.busy": "2022-04-18T01:50:13.231258Z",
|
598 |
+
"iopub.status.idle": "2022-04-18T01:50:13.233058Z",
|
599 |
+
"shell.execute_reply": "2022-04-18T01:50:13.233434Z",
|
600 |
+
"shell.execute_reply.started": "2022-04-16T12:24:19.850932Z"
|
601 |
+
},
|
602 |
+
"papermill": {
|
603 |
+
"duration": 0.075455,
|
604 |
+
"end_time": "2022-04-18T01:50:13.233582",
|
605 |
+
"exception": false,
|
606 |
+
"start_time": "2022-04-18T01:50:13.158127",
|
607 |
+
"status": "completed"
|
608 |
+
},
|
609 |
+
"tags": []
|
610 |
+
},
|
611 |
+
"outputs": [],
|
612 |
+
"source": [
|
613 |
+
"PAD_TOKEN_ID = 0\n",
|
614 |
+
"\n",
|
615 |
+
"def collate_fn(batch_inputs):\n",
|
616 |
+
" seq_lengths = [i[\"input_ids\"].size(1) for i in batch_inputs]\n",
|
617 |
+
" max_length = max(seq_lengths)\n",
|
618 |
+
" input_ids = torch.full((len(batch_inputs), max_length), PAD_TOKEN_ID, dtype=torch.long)\n",
|
619 |
+
" attention_mask = torch.full((len(batch_inputs), max_length), 0, dtype=torch.long)\n",
|
620 |
+
" for idx, inputs in enumerate(batch_inputs):\n",
|
621 |
+
" input_ids[idx, :seq_lengths[idx]] = inputs[\"input_ids\"]\n",
|
622 |
+
" attention_mask[idx, :seq_lengths[idx]] = 1\n",
|
623 |
+
" labels = input_ids.clone()\n",
|
624 |
+
" labels[labels == PAD_TOKEN_ID] = -100\n",
|
625 |
+
" return {\"input_ids\": input_ids, \"attention_mask\": attention_mask, \"labels\": labels}"
|
626 |
+
]
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"cell_type": "code",
|
630 |
+
"execution_count": 11,
|
631 |
+
"id": "193e7672",
|
632 |
+
"metadata": {
|
633 |
+
"execution": {
|
634 |
+
"iopub.execute_input": "2022-04-18T01:50:13.312349Z",
|
635 |
+
"iopub.status.busy": "2022-04-18T01:50:13.308720Z",
|
636 |
+
"iopub.status.idle": "2022-04-18T01:50:16.181794Z",
|
637 |
+
"shell.execute_reply": "2022-04-18T01:50:16.182874Z",
|
638 |
+
"shell.execute_reply.started": "2022-04-16T12:33:23.688559Z"
|
639 |
+
},
|
640 |
+
"papermill": {
|
641 |
+
"duration": 2.914467,
|
642 |
+
"end_time": "2022-04-18T01:50:16.183073",
|
643 |
+
"exception": false,
|
644 |
+
"start_time": "2022-04-18T01:50:13.268606",
|
645 |
+
"status": "completed"
|
646 |
+
},
|
647 |
+
"tags": []
|
648 |
+
},
|
649 |
+
"outputs": [
|
650 |
+
{
|
651 |
+
"name": "stdout",
|
652 |
+
"output_type": "stream",
|
653 |
+
"text": [
|
654 |
+
"Number of trainable parameters: 50873088\n"
|
655 |
+
]
|
656 |
+
}
|
657 |
+
],
|
658 |
+
"source": [
|
659 |
+
"config = GPT2Config(vocab_size = len(tokenizer.vocab),\n",
|
660 |
+
" n_positions = max_lengths,\n",
|
661 |
+
" n_embd = 768,\n",
|
662 |
+
" n_layer = 6,\n",
|
663 |
+
" n_head = 12,\n",
|
664 |
+
" eos_token_id=tokenizer.vocab[\"<eos>\"],\n",
|
665 |
+
" bos_token_id=tokenizer.vocab[\"<bos>\"])\n",
|
666 |
+
"model = GPT2LMHeadModel(config)\n",
|
667 |
+
"num_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
|
668 |
+
"print(f\"Number of trainable parameters: {num_parameters}\")"
|
669 |
+
]
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"cell_type": "code",
|
673 |
+
"execution_count": 12,
|
674 |
+
"id": "484c0fc2",
|
675 |
+
"metadata": {
|
676 |
+
"execution": {
|
677 |
+
"iopub.execute_input": "2022-04-18T01:50:16.302344Z",
|
678 |
+
"iopub.status.busy": "2022-04-18T01:50:16.301561Z",
|
679 |
+
"iopub.status.idle": "2022-04-18T01:50:21.013819Z",
|
680 |
+
"shell.execute_reply": "2022-04-18T01:50:21.014253Z",
|
681 |
+
"shell.execute_reply.started": "2022-04-16T12:24:46.722086Z"
|
682 |
+
},
|
683 |
+
"papermill": {
|
684 |
+
"duration": 4.776549,
|
685 |
+
"end_time": "2022-04-18T01:50:21.014420",
|
686 |
+
"exception": false,
|
687 |
+
"start_time": "2022-04-18T01:50:16.237871",
|
688 |
+
"status": "completed"
|
689 |
+
},
|
690 |
+
"tags": []
|
691 |
+
},
|
692 |
+
"outputs": [
|
693 |
+
{
|
694 |
+
"name": "stderr",
|
695 |
+
"output_type": "stream",
|
696 |
+
"text": [
|
697 |
+
"Using amp half precision backend\n"
|
698 |
+
]
|
699 |
+
}
|
700 |
+
],
|
701 |
+
"source": [
|
702 |
+
"from transformers import EarlyStoppingCallback\n",
|
703 |
+
"training_args = TrainingArguments(\n",
|
704 |
+
" output_dir=\"results\",\n",
|
705 |
+
" eval_steps=2000,\n",
|
706 |
+
" save_steps=2000,\n",
|
707 |
+
" evaluation_strategy=\"steps\",\n",
|
708 |
+
" learning_rate=3e-4,\n",
|
709 |
+
" per_device_train_batch_size=32,\n",
|
710 |
+
" per_device_eval_batch_size=64,\n",
|
711 |
+
" save_total_limit=2,\n",
|
712 |
+
" num_train_epochs=8,\n",
|
713 |
+
" fp16=True,\n",
|
714 |
+
" report_to=\"none\",\n",
|
715 |
+
" dataloader_num_workers=2,\n",
|
716 |
+
" group_by_length=True,\n",
|
717 |
+
" metric_for_best_model = 'loss',\n",
|
718 |
+
" load_best_model_at_end=True\n",
|
719 |
+
")\n",
|
720 |
+
"\n",
|
721 |
+
"trainer = Trainer(\n",
|
722 |
+
" model=model,\n",
|
723 |
+
" args=training_args,\n",
|
724 |
+
" train_dataset=train_dataset,\n",
|
725 |
+
" eval_dataset=val_dataset,\n",
|
726 |
+
" data_collator=collate_fn,\n",
|
727 |
+
" callbacks = [EarlyStoppingCallback(early_stopping_patience=1)]\n",
|
728 |
+
")"
|
729 |
+
]
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"cell_type": "code",
|
733 |
+
"execution_count": 13,
|
734 |
+
"id": "fbc93ddf",
|
735 |
+
"metadata": {
|
736 |
+
"execution": {
|
737 |
+
"iopub.execute_input": "2022-04-18T01:50:21.089679Z",
|
738 |
+
"iopub.status.busy": "2022-04-18T01:50:21.089153Z",
|
739 |
+
"iopub.status.idle": "2022-04-18T05:43:12.456180Z",
|
740 |
+
"shell.execute_reply": "2022-04-18T05:43:12.455654Z",
|
741 |
+
"shell.execute_reply.started": "2022-04-16T12:25:06.616641Z"
|
742 |
+
},
|
743 |
+
"papermill": {
|
744 |
+
"duration": 13971.40658,
|
745 |
+
"end_time": "2022-04-18T05:43:12.456310",
|
746 |
+
"exception": false,
|
747 |
+
"start_time": "2022-04-18T01:50:21.049730",
|
748 |
+
"status": "completed"
|
749 |
+
},
|
750 |
+
"tags": []
|
751 |
+
},
|
752 |
+
"outputs": [
|
753 |
+
{
|
754 |
+
"name": "stderr",
|
755 |
+
"output_type": "stream",
|
756 |
+
"text": [
|
757 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/optimization.py:309: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
758 |
+
" FutureWarning,\n",
|
759 |
+
"***** Running training *****\n",
|
760 |
+
" Num examples = 605320\n",
|
761 |
+
" Num Epochs = 8\n",
|
762 |
+
" Instantaneous batch size per device = 32\n",
|
763 |
+
" Total train batch size (w. parallel, distributed & accumulation) = 32\n",
|
764 |
+
" Gradient Accumulation steps = 1\n",
|
765 |
+
" Total optimization steps = 151336\n"
|
766 |
+
]
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"data": {
|
770 |
+
"text/html": [
|
771 |
+
"\n",
|
772 |
+
" <div>\n",
|
773 |
+
" \n",
|
774 |
+
" <progress value='58000' max='151336' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
775 |
+
" [ 58000/151336 3:52:48 < 6:14:39, 4.15 it/s, Epoch 3/8]\n",
|
776 |
+
" </div>\n",
|
777 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
778 |
+
" <thead>\n",
|
779 |
+
" <tr style=\"text-align: left;\">\n",
|
780 |
+
" <th>Step</th>\n",
|
781 |
+
" <th>Training Loss</th>\n",
|
782 |
+
" <th>Validation Loss</th>\n",
|
783 |
+
" </tr>\n",
|
784 |
+
" </thead>\n",
|
785 |
+
" <tbody>\n",
|
786 |
+
" <tr>\n",
|
787 |
+
" <td>2000</td>\n",
|
788 |
+
" <td>4.367700</td>\n",
|
789 |
+
" <td>4.235631</td>\n",
|
790 |
+
" </tr>\n",
|
791 |
+
" <tr>\n",
|
792 |
+
" <td>4000</td>\n",
|
793 |
+
" <td>3.953300</td>\n",
|
794 |
+
" <td>3.883913</td>\n",
|
795 |
+
" </tr>\n",
|
796 |
+
" <tr>\n",
|
797 |
+
" <td>6000</td>\n",
|
798 |
+
" <td>3.790700</td>\n",
|
799 |
+
" <td>3.730361</td>\n",
|
800 |
+
" </tr>\n",
|
801 |
+
" <tr>\n",
|
802 |
+
" <td>8000</td>\n",
|
803 |
+
" <td>3.699500</td>\n",
|
804 |
+
" <td>3.639758</td>\n",
|
805 |
+
" </tr>\n",
|
806 |
+
" <tr>\n",
|
807 |
+
" <td>10000</td>\n",
|
808 |
+
" <td>3.626500</td>\n",
|
809 |
+
" <td>3.581570</td>\n",
|
810 |
+
" </tr>\n",
|
811 |
+
" <tr>\n",
|
812 |
+
" <td>12000</td>\n",
|
813 |
+
" <td>3.575800</td>\n",
|
814 |
+
" <td>3.529477</td>\n",
|
815 |
+
" </tr>\n",
|
816 |
+
" <tr>\n",
|
817 |
+
" <td>14000</td>\n",
|
818 |
+
" <td>3.539500</td>\n",
|
819 |
+
" <td>3.490788</td>\n",
|
820 |
+
" </tr>\n",
|
821 |
+
" <tr>\n",
|
822 |
+
" <td>16000</td>\n",
|
823 |
+
" <td>3.506100</td>\n",
|
824 |
+
" <td>3.457211</td>\n",
|
825 |
+
" </tr>\n",
|
826 |
+
" <tr>\n",
|
827 |
+
" <td>18000</td>\n",
|
828 |
+
" <td>3.471100</td>\n",
|
829 |
+
" <td>3.427910</td>\n",
|
830 |
+
" </tr>\n",
|
831 |
+
" <tr>\n",
|
832 |
+
" <td>20000</td>\n",
|
833 |
+
" <td>3.411700</td>\n",
|
834 |
+
" <td>3.404946</td>\n",
|
835 |
+
" </tr>\n",
|
836 |
+
" <tr>\n",
|
837 |
+
" <td>22000</td>\n",
|
838 |
+
" <td>3.388500</td>\n",
|
839 |
+
" <td>3.384355</td>\n",
|
840 |
+
" </tr>\n",
|
841 |
+
" <tr>\n",
|
842 |
+
" <td>24000</td>\n",
|
843 |
+
" <td>3.384500</td>\n",
|
844 |
+
" <td>3.362393</td>\n",
|
845 |
+
" </tr>\n",
|
846 |
+
" <tr>\n",
|
847 |
+
" <td>26000</td>\n",
|
848 |
+
" <td>3.363900</td>\n",
|
849 |
+
" <td>3.345612</td>\n",
|
850 |
+
" </tr>\n",
|
851 |
+
" <tr>\n",
|
852 |
+
" <td>28000</td>\n",
|
853 |
+
" <td>3.350600</td>\n",
|
854 |
+
" <td>3.330873</td>\n",
|
855 |
+
" </tr>\n",
|
856 |
+
" <tr>\n",
|
857 |
+
" <td>30000</td>\n",
|
858 |
+
" <td>3.339300</td>\n",
|
859 |
+
" <td>3.316820</td>\n",
|
860 |
+
" </tr>\n",
|
861 |
+
" <tr>\n",
|
862 |
+
" <td>32000</td>\n",
|
863 |
+
" <td>3.320600</td>\n",
|
864 |
+
" <td>3.303108</td>\n",
|
865 |
+
" </tr>\n",
|
866 |
+
" <tr>\n",
|
867 |
+
" <td>34000</td>\n",
|
868 |
+
" <td>3.316600</td>\n",
|
869 |
+
" <td>3.286899</td>\n",
|
870 |
+
" </tr>\n",
|
871 |
+
" <tr>\n",
|
872 |
+
" <td>36000</td>\n",
|
873 |
+
" <td>3.312900</td>\n",
|
874 |
+
" <td>3.277738</td>\n",
|
875 |
+
" </tr>\n",
|
876 |
+
" <tr>\n",
|
877 |
+
" <td>38000</td>\n",
|
878 |
+
" <td>3.272500</td>\n",
|
879 |
+
" <td>3.271317</td>\n",
|
880 |
+
" </tr>\n",
|
881 |
+
" <tr>\n",
|
882 |
+
" <td>40000</td>\n",
|
883 |
+
" <td>3.228100</td>\n",
|
884 |
+
" <td>3.260200</td>\n",
|
885 |
+
" </tr>\n",
|
886 |
+
" <tr>\n",
|
887 |
+
" <td>42000</td>\n",
|
888 |
+
" <td>3.232000</td>\n",
|
889 |
+
" <td>3.252335</td>\n",
|
890 |
+
" </tr>\n",
|
891 |
+
" <tr>\n",
|
892 |
+
" <td>44000</td>\n",
|
893 |
+
" <td>3.220500</td>\n",
|
894 |
+
" <td>3.247865</td>\n",
|
895 |
+
" </tr>\n",
|
896 |
+
" <tr>\n",
|
897 |
+
" <td>46000</td>\n",
|
898 |
+
" <td>3.219700</td>\n",
|
899 |
+
" <td>3.236358</td>\n",
|
900 |
+
" </tr>\n",
|
901 |
+
" <tr>\n",
|
902 |
+
" <td>48000</td>\n",
|
903 |
+
" <td>3.218000</td>\n",
|
904 |
+
" <td>3.228396</td>\n",
|
905 |
+
" </tr>\n",
|
906 |
+
" <tr>\n",
|
907 |
+
" <td>50000</td>\n",
|
908 |
+
" <td>3.214900</td>\n",
|
909 |
+
" <td>3.219474</td>\n",
|
910 |
+
" </tr>\n",
|
911 |
+
" <tr>\n",
|
912 |
+
" <td>52000</td>\n",
|
913 |
+
" <td>3.207100</td>\n",
|
914 |
+
" <td>3.213028</td>\n",
|
915 |
+
" </tr>\n",
|
916 |
+
" <tr>\n",
|
917 |
+
" <td>54000</td>\n",
|
918 |
+
" <td>3.206800</td>\n",
|
919 |
+
" <td>3.206626</td>\n",
|
920 |
+
" </tr>\n",
|
921 |
+
" <tr>\n",
|
922 |
+
" <td>56000</td>\n",
|
923 |
+
" <td>3.196200</td>\n",
|
924 |
+
" <td>3.197654</td>\n",
|
925 |
+
" </tr>\n",
|
926 |
+
" <tr>\n",
|
927 |
+
" <td>58000</td>\n",
|
928 |
+
" <td>3.125000</td>\n",
|
929 |
+
" <td>3.197687</td>\n",
|
930 |
+
" </tr>\n",
|
931 |
+
" </tbody>\n",
|
932 |
+
"</table><p>"
|
933 |
+
],
|
934 |
+
"text/plain": [
|
935 |
+
"<IPython.core.display.HTML object>"
|
936 |
+
]
|
937 |
+
},
|
938 |
+
"metadata": {},
|
939 |
+
"output_type": "display_data"
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"name": "stderr",
|
943 |
+
"output_type": "stream",
|
944 |
+
"text": [
|
945 |
+
"***** Running Evaluation *****\n",
|
946 |
+
" Num examples = 12354\n",
|
947 |
+
" Batch size = 64\n",
|
948 |
+
"Saving model checkpoint to results/checkpoint-2000\n",
|
949 |
+
"Configuration saved in results/checkpoint-2000/config.json\n",
|
950 |
+
"Model weights saved in results/checkpoint-2000/pytorch_model.bin\n",
|
951 |
+
"***** Running Evaluation *****\n",
|
952 |
+
" Num examples = 12354\n",
|
953 |
+
" Batch size = 64\n",
|
954 |
+
"Saving model checkpoint to results/checkpoint-4000\n",
|
955 |
+
"Configuration saved in results/checkpoint-4000/config.json\n",
|
956 |
+
"Model weights saved in results/checkpoint-4000/pytorch_model.bin\n",
|
957 |
+
"***** Running Evaluation *****\n",
|
958 |
+
" Num examples = 12354\n",
|
959 |
+
" Batch size = 64\n",
|
960 |
+
"Saving model checkpoint to results/checkpoint-6000\n",
|
961 |
+
"Configuration saved in results/checkpoint-6000/config.json\n",
|
962 |
+
"Model weights saved in results/checkpoint-6000/pytorch_model.bin\n",
|
963 |
+
"Deleting older checkpoint [results/checkpoint-2000] due to args.save_total_limit\n",
|
964 |
+
"***** Running Evaluation *****\n",
|
965 |
+
" Num examples = 12354\n",
|
966 |
+
" Batch size = 64\n",
|
967 |
+
"Saving model checkpoint to results/checkpoint-8000\n",
|
968 |
+
"Configuration saved in results/checkpoint-8000/config.json\n",
|
969 |
+
"Model weights saved in results/checkpoint-8000/pytorch_model.bin\n",
|
970 |
+
"Deleting older checkpoint [results/checkpoint-4000] due to args.save_total_limit\n",
|
971 |
+
"***** Running Evaluation *****\n",
|
972 |
+
" Num examples = 12354\n",
|
973 |
+
" Batch size = 64\n",
|
974 |
+
"Saving model checkpoint to results/checkpoint-10000\n",
|
975 |
+
"Configuration saved in results/checkpoint-10000/config.json\n",
|
976 |
+
"Model weights saved in results/checkpoint-10000/pytorch_model.bin\n",
|
977 |
+
"Deleting older checkpoint [results/checkpoint-6000] due to args.save_total_limit\n",
|
978 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
979 |
+
" args.max_grad_norm,\n",
|
980 |
+
"***** Running Evaluation *****\n",
|
981 |
+
" Num examples = 12354\n",
|
982 |
+
" Batch size = 64\n",
|
983 |
+
"Saving model checkpoint to results/checkpoint-12000\n",
|
984 |
+
"Configuration saved in results/checkpoint-12000/config.json\n",
|
985 |
+
"Model weights saved in results/checkpoint-12000/pytorch_model.bin\n",
|
986 |
+
"Deleting older checkpoint [results/checkpoint-8000] due to args.save_total_limit\n",
|
987 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
988 |
+
" args.max_grad_norm,\n",
|
989 |
+
"***** Running Evaluation *****\n",
|
990 |
+
" Num examples = 12354\n",
|
991 |
+
" Batch size = 64\n",
|
992 |
+
"Saving model checkpoint to results/checkpoint-14000\n",
|
993 |
+
"Configuration saved in results/checkpoint-14000/config.json\n",
|
994 |
+
"Model weights saved in results/checkpoint-14000/pytorch_model.bin\n",
|
995 |
+
"Deleting older checkpoint [results/checkpoint-10000] due to args.save_total_limit\n",
|
996 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
997 |
+
" args.max_grad_norm,\n",
|
998 |
+
"***** Running Evaluation *****\n",
|
999 |
+
" Num examples = 12354\n",
|
1000 |
+
" Batch size = 64\n",
|
1001 |
+
"Saving model checkpoint to results/checkpoint-16000\n",
|
1002 |
+
"Configuration saved in results/checkpoint-16000/config.json\n",
|
1003 |
+
"Model weights saved in results/checkpoint-16000/pytorch_model.bin\n",
|
1004 |
+
"Deleting older checkpoint [results/checkpoint-12000] due to args.save_total_limit\n",
|
1005 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1006 |
+
" args.max_grad_norm,\n",
|
1007 |
+
"***** Running Evaluation *****\n",
|
1008 |
+
" Num examples = 12354\n",
|
1009 |
+
" Batch size = 64\n",
|
1010 |
+
"Saving model checkpoint to results/checkpoint-18000\n",
|
1011 |
+
"Configuration saved in results/checkpoint-18000/config.json\n",
|
1012 |
+
"Model weights saved in results/checkpoint-18000/pytorch_model.bin\n",
|
1013 |
+
"Deleting older checkpoint [results/checkpoint-14000] due to args.save_total_limit\n",
|
1014 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1015 |
+
" args.max_grad_norm,\n",
|
1016 |
+
"***** Running Evaluation *****\n",
|
1017 |
+
" Num examples = 12354\n",
|
1018 |
+
" Batch size = 64\n",
|
1019 |
+
"Saving model checkpoint to results/checkpoint-20000\n",
|
1020 |
+
"Configuration saved in results/checkpoint-20000/config.json\n",
|
1021 |
+
"Model weights saved in results/checkpoint-20000/pytorch_model.bin\n",
|
1022 |
+
"Deleting older checkpoint [results/checkpoint-16000] due to args.save_total_limit\n",
|
1023 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1024 |
+
" args.max_grad_norm,\n",
|
1025 |
+
"***** Running Evaluation *****\n",
|
1026 |
+
" Num examples = 12354\n",
|
1027 |
+
" Batch size = 64\n",
|
1028 |
+
"Saving model checkpoint to results/checkpoint-22000\n",
|
1029 |
+
"Configuration saved in results/checkpoint-22000/config.json\n",
|
1030 |
+
"Model weights saved in results/checkpoint-22000/pytorch_model.bin\n",
|
1031 |
+
"Deleting older checkpoint [results/checkpoint-18000] due to args.save_total_limit\n",
|
1032 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1033 |
+
" args.max_grad_norm,\n",
|
1034 |
+
"***** Running Evaluation *****\n",
|
1035 |
+
" Num examples = 12354\n",
|
1036 |
+
" Batch size = 64\n",
|
1037 |
+
"Saving model checkpoint to results/checkpoint-24000\n",
|
1038 |
+
"Configuration saved in results/checkpoint-24000/config.json\n",
|
1039 |
+
"Model weights saved in results/checkpoint-24000/pytorch_model.bin\n",
|
1040 |
+
"Deleting older checkpoint [results/checkpoint-20000] due to args.save_total_limit\n",
|
1041 |
+
"***** Running Evaluation *****\n",
|
1042 |
+
" Num examples = 12354\n",
|
1043 |
+
" Batch size = 64\n",
|
1044 |
+
"Saving model checkpoint to results/checkpoint-26000\n",
|
1045 |
+
"Configuration saved in results/checkpoint-26000/config.json\n",
|
1046 |
+
"Model weights saved in results/checkpoint-26000/pytorch_model.bin\n",
|
1047 |
+
"Deleting older checkpoint [results/checkpoint-22000] due to args.save_total_limit\n",
|
1048 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1049 |
+
" args.max_grad_norm,\n",
|
1050 |
+
"***** Running Evaluation *****\n",
|
1051 |
+
" Num examples = 12354\n",
|
1052 |
+
" Batch size = 64\n",
|
1053 |
+
"Saving model checkpoint to results/checkpoint-28000\n",
|
1054 |
+
"Configuration saved in results/checkpoint-28000/config.json\n",
|
1055 |
+
"Model weights saved in results/checkpoint-28000/pytorch_model.bin\n",
|
1056 |
+
"Deleting older checkpoint [results/checkpoint-24000] due to args.save_total_limit\n",
|
1057 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1058 |
+
" args.max_grad_norm,\n",
|
1059 |
+
"***** Running Evaluation *****\n",
|
1060 |
+
" Num examples = 12354\n",
|
1061 |
+
" Batch size = 64\n",
|
1062 |
+
"Saving model checkpoint to results/checkpoint-30000\n",
|
1063 |
+
"Configuration saved in results/checkpoint-30000/config.json\n",
|
1064 |
+
"Model weights saved in results/checkpoint-30000/pytorch_model.bin\n",
|
1065 |
+
"Deleting older checkpoint [results/checkpoint-26000] due to args.save_total_limit\n",
|
1066 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1067 |
+
" args.max_grad_norm,\n",
|
1068 |
+
"***** Running Evaluation *****\n",
|
1069 |
+
" Num examples = 12354\n",
|
1070 |
+
" Batch size = 64\n",
|
1071 |
+
"Saving model checkpoint to results/checkpoint-32000\n",
|
1072 |
+
"Configuration saved in results/checkpoint-32000/config.json\n",
|
1073 |
+
"Model weights saved in results/checkpoint-32000/pytorch_model.bin\n",
|
1074 |
+
"Deleting older checkpoint [results/checkpoint-28000] due to args.save_total_limit\n",
|
1075 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1076 |
+
" args.max_grad_norm,\n",
|
1077 |
+
"***** Running Evaluation *****\n",
|
1078 |
+
" Num examples = 12354\n",
|
1079 |
+
" Batch size = 64\n",
|
1080 |
+
"Saving model checkpoint to results/checkpoint-34000\n",
|
1081 |
+
"Configuration saved in results/checkpoint-34000/config.json\n",
|
1082 |
+
"Model weights saved in results/checkpoint-34000/pytorch_model.bin\n",
|
1083 |
+
"Deleting older checkpoint [results/checkpoint-30000] due to args.save_total_limit\n",
|
1084 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1085 |
+
" args.max_grad_norm,\n",
|
1086 |
+
"***** Running Evaluation *****\n",
|
1087 |
+
" Num examples = 12354\n",
|
1088 |
+
" Batch size = 64\n",
|
1089 |
+
"Saving model checkpoint to results/checkpoint-36000\n",
|
1090 |
+
"Configuration saved in results/checkpoint-36000/config.json\n",
|
1091 |
+
"Model weights saved in results/checkpoint-36000/pytorch_model.bin\n",
|
1092 |
+
"Deleting older checkpoint [results/checkpoint-32000] due to args.save_total_limit\n",
|
1093 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1094 |
+
" args.max_grad_norm,\n",
|
1095 |
+
"***** Running Evaluation *****\n",
|
1096 |
+
" Num examples = 12354\n",
|
1097 |
+
" Batch size = 64\n",
|
1098 |
+
"Saving model checkpoint to results/checkpoint-38000\n",
|
1099 |
+
"Configuration saved in results/checkpoint-38000/config.json\n",
|
1100 |
+
"Model weights saved in results/checkpoint-38000/pytorch_model.bin\n",
|
1101 |
+
"Deleting older checkpoint [results/checkpoint-34000] due to args.save_total_limit\n",
|
1102 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1103 |
+
" args.max_grad_norm,\n",
|
1104 |
+
"***** Running Evaluation *****\n",
|
1105 |
+
" Num examples = 12354\n",
|
1106 |
+
" Batch size = 64\n",
|
1107 |
+
"Saving model checkpoint to results/checkpoint-40000\n",
|
1108 |
+
"Configuration saved in results/checkpoint-40000/config.json\n",
|
1109 |
+
"Model weights saved in results/checkpoint-40000/pytorch_model.bin\n",
|
1110 |
+
"Deleting older checkpoint [results/checkpoint-36000] due to args.save_total_limit\n",
|
1111 |
+
"***** Running Evaluation *****\n",
|
1112 |
+
" Num examples = 12354\n",
|
1113 |
+
" Batch size = 64\n",
|
1114 |
+
"Saving model checkpoint to results/checkpoint-42000\n",
|
1115 |
+
"Configuration saved in results/checkpoint-42000/config.json\n",
|
1116 |
+
"Model weights saved in results/checkpoint-42000/pytorch_model.bin\n",
|
1117 |
+
"Deleting older checkpoint [results/checkpoint-38000] due to args.save_total_limit\n",
|
1118 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1119 |
+
" args.max_grad_norm,\n",
|
1120 |
+
"***** Running Evaluation *****\n",
|
1121 |
+
" Num examples = 12354\n",
|
1122 |
+
" Batch size = 64\n",
|
1123 |
+
"Saving model checkpoint to results/checkpoint-44000\n",
|
1124 |
+
"Configuration saved in results/checkpoint-44000/config.json\n",
|
1125 |
+
"Model weights saved in results/checkpoint-44000/pytorch_model.bin\n",
|
1126 |
+
"Deleting older checkpoint [results/checkpoint-40000] due to args.save_total_limit\n",
|
1127 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1128 |
+
" args.max_grad_norm,\n",
|
1129 |
+
"***** Running Evaluation *****\n",
|
1130 |
+
" Num examples = 12354\n",
|
1131 |
+
" Batch size = 64\n",
|
1132 |
+
"Saving model checkpoint to results/checkpoint-46000\n",
|
1133 |
+
"Configuration saved in results/checkpoint-46000/config.json\n",
|
1134 |
+
"Model weights saved in results/checkpoint-46000/pytorch_model.bin\n",
|
1135 |
+
"Deleting older checkpoint [results/checkpoint-42000] due to args.save_total_limit\n",
|
1136 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1137 |
+
" args.max_grad_norm,\n",
|
1138 |
+
"***** Running Evaluation *****\n",
|
1139 |
+
" Num examples = 12354\n",
|
1140 |
+
" Batch size = 64\n",
|
1141 |
+
"Saving model checkpoint to results/checkpoint-48000\n",
|
1142 |
+
"Configuration saved in results/checkpoint-48000/config.json\n",
|
1143 |
+
"Model weights saved in results/checkpoint-48000/pytorch_model.bin\n",
|
1144 |
+
"Deleting older checkpoint [results/checkpoint-44000] due to args.save_total_limit\n",
|
1145 |
+
"***** Running Evaluation *****\n",
|
1146 |
+
" Num examples = 12354\n",
|
1147 |
+
" Batch size = 64\n",
|
1148 |
+
"Saving model checkpoint to results/checkpoint-50000\n",
|
1149 |
+
"Configuration saved in results/checkpoint-50000/config.json\n",
|
1150 |
+
"Model weights saved in results/checkpoint-50000/pytorch_model.bin\n",
|
1151 |
+
"Deleting older checkpoint [results/checkpoint-46000] due to args.save_total_limit\n",
|
1152 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1153 |
+
" args.max_grad_norm,\n",
|
1154 |
+
"***** Running Evaluation *****\n",
|
1155 |
+
" Num examples = 12354\n",
|
1156 |
+
" Batch size = 64\n",
|
1157 |
+
"Saving model checkpoint to results/checkpoint-52000\n",
|
1158 |
+
"Configuration saved in results/checkpoint-52000/config.json\n",
|
1159 |
+
"Model weights saved in results/checkpoint-52000/pytorch_model.bin\n",
|
1160 |
+
"Deleting older checkpoint [results/checkpoint-48000] due to args.save_total_limit\n",
|
1161 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1162 |
+
" args.max_grad_norm,\n",
|
1163 |
+
"***** Running Evaluation *****\n",
|
1164 |
+
" Num examples = 12354\n",
|
1165 |
+
" Batch size = 64\n",
|
1166 |
+
"Saving model checkpoint to results/checkpoint-54000\n",
|
1167 |
+
"Configuration saved in results/checkpoint-54000/config.json\n",
|
1168 |
+
"Model weights saved in results/checkpoint-54000/pytorch_model.bin\n",
|
1169 |
+
"Deleting older checkpoint [results/checkpoint-50000] due to args.save_total_limit\n",
|
1170 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1171 |
+
" args.max_grad_norm,\n",
|
1172 |
+
"***** Running Evaluation *****\n",
|
1173 |
+
" Num examples = 12354\n",
|
1174 |
+
" Batch size = 64\n",
|
1175 |
+
"Saving model checkpoint to results/checkpoint-56000\n",
|
1176 |
+
"Configuration saved in results/checkpoint-56000/config.json\n",
|
1177 |
+
"Model weights saved in results/checkpoint-56000/pytorch_model.bin\n",
|
1178 |
+
"Deleting older checkpoint [results/checkpoint-52000] due to args.save_total_limit\n",
|
1179 |
+
"/opt/conda/lib/python3.7/site-packages/transformers/trainer.py:1410: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior.\n",
|
1180 |
+
" args.max_grad_norm,\n",
|
1181 |
+
"***** Running Evaluation *****\n",
|
1182 |
+
" Num examples = 12354\n",
|
1183 |
+
" Batch size = 64\n",
|
1184 |
+
"Saving model checkpoint to results/checkpoint-58000\n",
|
1185 |
+
"Configuration saved in results/checkpoint-58000/config.json\n",
|
1186 |
+
"Model weights saved in results/checkpoint-58000/pytorch_model.bin\n",
|
1187 |
+
"Deleting older checkpoint [results/checkpoint-54000] due to args.save_total_limit\n",
|
1188 |
+
"\n",
|
1189 |
+
"\n",
|
1190 |
+
"Training completed. Do not forget to share your model on huggingface.co/models =)\n",
|
1191 |
+
"\n",
|
1192 |
+
"\n",
|
1193 |
+
"Loading best model from results/checkpoint-56000 (score: 3.1976535320281982).\n"
|
1194 |
+
]
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"data": {
|
1198 |
+
"text/plain": [
|
1199 |
+
"TrainOutput(global_step=58000, training_loss=3.448922660038389, metrics={'train_runtime': 13970.1599, 'train_samples_per_second': 346.636, 'train_steps_per_second': 10.833, 'total_flos': 5.124009885990912e+16, 'train_loss': 3.448922660038389, 'epoch': 3.07})"
|
1200 |
+
]
|
1201 |
+
},
|
1202 |
+
"execution_count": 13,
|
1203 |
+
"metadata": {},
|
1204 |
+
"output_type": "execute_result"
|
1205 |
+
}
|
1206 |
+
],
|
1207 |
+
"source": [
|
1208 |
+
"# n_embd = 768, n_layer = 12, n_head = 12, 58k steps, 93.4 M parameters, train loss 3.150600, val loss 3.163932\n",
|
1209 |
+
"# n_embd = 768, n_layer = 6, n_head = 12, steps, 50.9 M parameters, train loss , val loss \n",
|
1210 |
+
"# n_embd = 256, n_layer = 4, n_head = 8, steps, 5.94M parameters, train loss 3.374200, val loss 3.339147\n",
|
1211 |
+
"# n_embd = 128, n_layer = 2, n_head = 4, 54k steps, 1.78M parameters, train loss 3.819500, val loss 3.694196\n",
|
1212 |
+
"trainer.train()"
|
1213 |
+
]
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"cell_type": "code",
|
1217 |
+
"execution_count": 14,
|
1218 |
+
"id": "127bea6d",
|
1219 |
+
"metadata": {
|
1220 |
+
"execution": {
|
1221 |
+
"iopub.execute_input": "2022-04-18T05:43:12.684274Z",
|
1222 |
+
"iopub.status.busy": "2022-04-18T05:43:12.683525Z",
|
1223 |
+
"iopub.status.idle": "2022-04-18T05:43:12.685531Z",
|
1224 |
+
"shell.execute_reply": "2022-04-18T05:43:12.685926Z",
|
1225 |
+
"shell.execute_reply.started": "2022-04-16T12:29:27.832584Z"
|
1226 |
+
},
|
1227 |
+
"papermill": {
|
1228 |
+
"duration": 0.122187,
|
1229 |
+
"end_time": "2022-04-18T05:43:12.686065",
|
1230 |
+
"exception": false,
|
1231 |
+
"start_time": "2022-04-18T05:43:12.563878",
|
1232 |
+
"status": "completed"
|
1233 |
+
},
|
1234 |
+
"tags": []
|
1235 |
+
},
|
1236 |
+
"outputs": [],
|
1237 |
+
"source": [
|
1238 |
+
"def generation(prompt, length):\n",
|
1239 |
+
" tokens = tokenizer(prompt=str(length) + prompt)\n",
|
1240 |
+
" output_ids = model.generate(tokens['input_ids'].to(\"cuda\"),\n",
|
1241 |
+
" do_sample=True, \n",
|
1242 |
+
" top_k=50,\n",
|
1243 |
+
" top_p=0.95,\n",
|
1244 |
+
" max_length=100)\n",
|
1245 |
+
" decoded_verse = tokenizer.decode(output_ids)[5:]\n",
|
1246 |
+
" return decoded_verse"
|
1247 |
+
]
|
1248 |
+
},
|
1249 |
+
{
|
1250 |
+
"cell_type": "code",
|
1251 |
+
"execution_count": 15,
|
1252 |
+
"id": "e7f22169",
|
1253 |
+
"metadata": {
|
1254 |
+
"execution": {
|
1255 |
+
"iopub.execute_input": "2022-04-18T05:43:12.909172Z",
|
1256 |
+
"iopub.status.busy": "2022-04-18T05:43:12.908333Z",
|
1257 |
+
"iopub.status.idle": "2022-04-18T05:43:13.116636Z",
|
1258 |
+
"shell.execute_reply": "2022-04-18T05:43:13.117086Z",
|
1259 |
+
"shell.execute_reply.started": "2022-04-16T12:30:03.02288Z"
|
1260 |
+
},
|
1261 |
+
"papermill": {
|
1262 |
+
"duration": 0.325253,
|
1263 |
+
"end_time": "2022-04-18T05:43:13.117240",
|
1264 |
+
"exception": false,
|
1265 |
+
"start_time": "2022-04-18T05:43:12.791987",
|
1266 |
+
"status": "completed"
|
1267 |
+
},
|
1268 |
+
"tags": []
|
1269 |
+
},
|
1270 |
+
"outputs": [
|
1271 |
+
{
|
1272 |
+
"name": "stderr",
|
1273 |
+
"output_type": "stream",
|
1274 |
+
"text": [
|
1275 |
+
"Setting `pad_token_id` to `eos_token_id`:10741 for open-end generation.\n"
|
1276 |
+
]
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"data": {
|
1280 |
+
"text/plain": [
|
1281 |
+
"'花明水在溪,好在波上得。月光忽在溪,圆明了不蚀。'"
|
1282 |
+
]
|
1283 |
+
},
|
1284 |
+
"execution_count": 15,
|
1285 |
+
"metadata": {},
|
1286 |
+
"output_type": "execute_result"
|
1287 |
+
}
|
1288 |
+
],
|
1289 |
+
"source": [
|
1290 |
+
"generation(\"花好月圆\", length=5)"
|
1291 |
+
]
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"cell_type": "code",
|
1295 |
+
"execution_count": 16,
|
1296 |
+
"id": "536bd1dd",
|
1297 |
+
"metadata": {
|
1298 |
+
"execution": {
|
1299 |
+
"iopub.execute_input": "2022-04-18T05:43:13.336560Z",
|
1300 |
+
"iopub.status.busy": "2022-04-18T05:43:13.335672Z",
|
1301 |
+
"iopub.status.idle": "2022-04-18T05:43:13.521122Z",
|
1302 |
+
"shell.execute_reply": "2022-04-18T05:43:13.521536Z",
|
1303 |
+
"shell.execute_reply.started": "2022-04-16T12:29:42.949166Z"
|
1304 |
+
},
|
1305 |
+
"papermill": {
|
1306 |
+
"duration": 0.298044,
|
1307 |
+
"end_time": "2022-04-18T05:43:13.521677",
|
1308 |
+
"exception": false,
|
1309 |
+
"start_time": "2022-04-18T05:43:13.223633",
|
1310 |
+
"status": "completed"
|
1311 |
+
},
|
1312 |
+
"tags": []
|
1313 |
+
},
|
1314 |
+
"outputs": [
|
1315 |
+
{
|
1316 |
+
"name": "stderr",
|
1317 |
+
"output_type": "stream",
|
1318 |
+
"text": [
|
1319 |
+
"Setting `pad_token_id` to `eos_token_id`:10741 for open-end generation.\n"
|
1320 |
+
]
|
1321 |
+
},
|
1322 |
+
{
|
1323 |
+
"data": {
|
1324 |
+
"text/plain": [
|
1325 |
+
"'下山来访小园中,楼阁清幽景物同。吃吃僧斋分数宿,饭松茶灶有馀功。'"
|
1326 |
+
]
|
1327 |
+
},
|
1328 |
+
"execution_count": 16,
|
1329 |
+
"metadata": {},
|
1330 |
+
"output_type": "execute_result"
|
1331 |
+
}
|
1332 |
+
],
|
1333 |
+
"source": [
|
1334 |
+
"generation(\"下楼吃饭\", length=7)"
|
1335 |
+
]
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"cell_type": "code",
|
1339 |
+
"execution_count": 17,
|
1340 |
+
"id": "dd75f0be",
|
1341 |
+
"metadata": {
|
1342 |
+
"execution": {
|
1343 |
+
"iopub.execute_input": "2022-04-18T05:43:13.745410Z",
|
1344 |
+
"iopub.status.busy": "2022-04-18T05:43:13.744513Z",
|
1345 |
+
"iopub.status.idle": "2022-04-18T05:43:14.123442Z",
|
1346 |
+
"shell.execute_reply": "2022-04-18T05:43:14.123883Z",
|
1347 |
+
"shell.execute_reply.started": "2022-04-16T12:29:44.683058Z"
|
1348 |
+
},
|
1349 |
+
"papermill": {
|
1350 |
+
"duration": 0.490314,
|
1351 |
+
"end_time": "2022-04-18T05:43:14.124043",
|
1352 |
+
"exception": false,
|
1353 |
+
"start_time": "2022-04-18T05:43:13.633729",
|
1354 |
+
"status": "completed"
|
1355 |
+
},
|
1356 |
+
"tags": []
|
1357 |
+
},
|
1358 |
+
"outputs": [
|
1359 |
+
{
|
1360 |
+
"name": "stderr",
|
1361 |
+
"output_type": "stream",
|
1362 |
+
"text": [
|
1363 |
+
"Setting `pad_token_id` to `eos_token_id`:10741 for open-end generation.\n"
|
1364 |
+
]
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"data": {
|
1368 |
+
"text/plain": [
|
1369 |
+
"'大深无坐今夕分明是别年,晚陪花下醉清眠。加餐我自能高咏,班列君应似谪仙。大地星河连太皞,深宵星斗下华躔。无言独向閒庭静,坐对西南又一天。'"
|
1370 |
+
]
|
1371 |
+
},
|
1372 |
+
"execution_count": 17,
|
1373 |
+
"metadata": {},
|
1374 |
+
"output_type": "execute_result"
|
1375 |
+
}
|
1376 |
+
],
|
1377 |
+
"source": [
|
1378 |
+
"generation(\"今晚加班\", length=7)"
|
1379 |
+
]
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"cell_type": "code",
|
1383 |
+
"execution_count": 18,
|
1384 |
+
"id": "393331e4",
|
1385 |
+
"metadata": {
|
1386 |
+
"execution": {
|
1387 |
+
"iopub.execute_input": "2022-04-18T05:43:14.346788Z",
|
1388 |
+
"iopub.status.busy": "2022-04-18T05:43:14.345916Z",
|
1389 |
+
"iopub.status.idle": "2022-04-18T05:43:14.539457Z",
|
1390 |
+
"shell.execute_reply": "2022-04-18T05:43:14.539890Z",
|
1391 |
+
"shell.execute_reply.started": "2022-04-16T12:29:56.371973Z"
|
1392 |
+
},
|
1393 |
+
"papermill": {
|
1394 |
+
"duration": 0.307929,
|
1395 |
+
"end_time": "2022-04-18T05:43:14.540041",
|
1396 |
+
"exception": false,
|
1397 |
+
"start_time": "2022-04-18T05:43:14.232112",
|
1398 |
+
"status": "completed"
|
1399 |
+
},
|
1400 |
+
"tags": []
|
1401 |
+
},
|
1402 |
+
"outputs": [
|
1403 |
+
{
|
1404 |
+
"name": "stderr",
|
1405 |
+
"output_type": "stream",
|
1406 |
+
"text": [
|
1407 |
+
"Setting `pad_token_id` to `eos_token_id`:10741 for open-end generation.\n"
|
1408 |
+
]
|
1409 |
+
},
|
1410 |
+
{
|
1411 |
+
"data": {
|
1412 |
+
"text/plain": [
|
1413 |
+
"'加餐未暇望天颜,班列群仙戏綵幡。内史赐花频赐宴,卷帘先为看朝元。'"
|
1414 |
+
]
|
1415 |
+
},
|
1416 |
+
"execution_count": 18,
|
1417 |
+
"metadata": {},
|
1418 |
+
"output_type": "execute_result"
|
1419 |
+
}
|
1420 |
+
],
|
1421 |
+
"source": [
|
1422 |
+
"generation(\"加班内卷\", length=7)"
|
1423 |
+
]
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"cell_type": "code",
|
1427 |
+
"execution_count": 19,
|
1428 |
+
"id": "ea886add",
|
1429 |
+
"metadata": {
|
1430 |
+
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
|
1431 |
+
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
|
1432 |
+
"execution": {
|
1433 |
+
"iopub.execute_input": "2022-04-18T05:43:14.760813Z",
|
1434 |
+
"iopub.status.busy": "2022-04-18T05:43:14.759955Z",
|
1435 |
+
"iopub.status.idle": "2022-04-18T05:43:14.761716Z",
|
1436 |
+
"shell.execute_reply": "2022-04-18T05:43:14.762174Z"
|
1437 |
+
},
|
1438 |
+
"papermill": {
|
1439 |
+
"duration": 0.113971,
|
1440 |
+
"end_time": "2022-04-18T05:43:14.762305",
|
1441 |
+
"exception": false,
|
1442 |
+
"start_time": "2022-04-18T05:43:14.648334",
|
1443 |
+
"status": "completed"
|
1444 |
+
},
|
1445 |
+
"tags": []
|
1446 |
+
},
|
1447 |
+
"outputs": [],
|
1448 |
+
"source": [
|
1449 |
+
"# # This Python 3 environment comes with many helpful analytics libraries installed\n",
|
1450 |
+
"# # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n",
|
1451 |
+
"# # For example, here's several helpful packages to load\n",
|
1452 |
+
"\n",
|
1453 |
+
"# import numpy as np # linear algebra\n",
|
1454 |
+
"# import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n",
|
1455 |
+
"\n",
|
1456 |
+
"# # Input data files are available in the read-only \"../input/\" directory\n",
|
1457 |
+
"# # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n",
|
1458 |
+
"\n",
|
1459 |
+
"# import os\n",
|
1460 |
+
"# for dirname, _, filenames in os.walk('/kaggle/input'):\n",
|
1461 |
+
"# for filename in filenames:\n",
|
1462 |
+
"# print(os.path.join(dirname, filename))\n",
|
1463 |
+
"\n",
|
1464 |
+
"# # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n",
|
1465 |
+
"# # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session"
|
1466 |
+
]
|
1467 |
+
}
|
1468 |
+
],
|
1469 |
+
"metadata": {
|
1470 |
+
"kernelspec": {
|
1471 |
+
"display_name": "Python 3 (ipykernel)",
|
1472 |
+
"language": "python",
|
1473 |
+
"name": "python3"
|
1474 |
+
},
|
1475 |
+
"language_info": {
|
1476 |
+
"codemirror_mode": {
|
1477 |
+
"name": "ipython",
|
1478 |
+
"version": 3
|
1479 |
+
},
|
1480 |
+
"file_extension": ".py",
|
1481 |
+
"mimetype": "text/x-python",
|
1482 |
+
"name": "python",
|
1483 |
+
"nbconvert_exporter": "python",
|
1484 |
+
"pygments_lexer": "ipython3",
|
1485 |
+
"version": "3.9.10"
|
1486 |
+
},
|
1487 |
+
"papermill": {
|
1488 |
+
"default_parameters": {},
|
1489 |
+
"duration": 14060.414143,
|
1490 |
+
"end_time": "2022-04-18T05:43:17.806051",
|
1491 |
+
"environment_variables": {},
|
1492 |
+
"exception": null,
|
1493 |
+
"input_path": "__notebook__.ipynb",
|
1494 |
+
"output_path": "__notebook__.ipynb",
|
1495 |
+
"parameters": {},
|
1496 |
+
"start_time": "2022-04-18T01:48:57.391908",
|
1497 |
+
"version": "2.3.3"
|
1498 |
+
}
|
1499 |
+
},
|
1500 |
+
"nbformat": 4,
|
1501 |
+
"nbformat_minor": 5
|
1502 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|
saved_model/.DS_Store
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60aad9e84184acf739b198f050b82fbf5ae133be5b284e3b9d99c823c916b132
|
3 |
+
size 6148
|
saved_model/config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6ef7db0cc72a8278be6c82773090292ee4be0957b0a75161241b817b010439e
|
3 |
+
size 748
|
saved_model/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad28f6bf811a2cde91efae753a8769a83461ef0e7c0ee740b584a671a9519f4a
|
3 |
+
size 203614109
|
saved_model/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f54f62ade9dfcf56bd08cc74bfa9ec22ef590bc9508a381e42d21dc95a89c2f
|
3 |
+
size 171436
|