File size: 2,075 Bytes
c62bbf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import chromadb
from .BaseDB import BaseDB
import random
import string
import os

class ChromaDB(BaseDB):
    
    def __init__(self):
        self.client = None
        self.collection = None
        self.path = None
    
    def init_db(self):

        if self.client is not None:
            print('ChromaDB has already been initialized')
            return

        folder_name = ''

        while os.path.exists(folder_name) or folder_name == '':
            # try to create a folder named temp_<random string> which is not yet existed
            folder_name =  "tempdb_" + ''.join(random.sample(string.ascii_letters + string.digits, 8))

        self.path = folder_name
        self.client = chromadb.PersistentClient(path = folder_name)

        self.collection = self.client.get_or_create_collection("search")

    def save(self, file_path):
        if file_path != self.path:
            # copy all files in self.path to file_path, with overwrite
            os.system("cp -r " + self.path + " " + file_path)
            previous_path = self.path
            self.path = file_path
            self.client = chromadb.PersistentClient(path = file_path)
            # remove previous path if it start with tempdb
            if previous_path.startswith("tempdb"):
                os.system("rm -rf " + previous_path)
                        

    def load(self, file_path):
        self.path = file_path
        self.client = chromadb.PersistentClient(path = file_path)
        self.collection = self.client.get_collection("search")

    def search(self, vector, n_results):
        results = self.collection.query(query_embeddings=[vector], n_results=n_results)
        return results['documents'][0]

    def init_from_docs(self, vectors, documents):
        if self.client is None:
            self.init_db()
        
        ids = []
        for i, doc in enumerate(documents):
            first_four_chat = doc[:min(4, len(doc))]
            ids.append( str(i) + "_" + doc)
        self.collection.add(embeddings=vectors, documents=documents, ids = ids)