Spaces:
Runtime error
Runtime error
File size: 2,977 Bytes
aef3deb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import random
import string
import os
from math import sqrt
class NaiveDB:
def __init__(self):
self.verbose = False
self.init_db()
def init_db(self):
if self.verbose:
print("call init_db")
self.stories = []
self.norms = []
self.vecs = []
self.flags = [] # 用于标记每个story是否可以被搜索
self.metas = [] # 用于存储每个story的meta信息
self.last_search_ids = [] # 用于存储上一次搜索的结果
def build_db(self, stories, vecs, flags = None, metas = None):
self.stories = stories
self.vecs = vecs
self.flags = flags if flags else [True for _ in self.stories]
self.metas = metas if metas else [{} for _ in self.stories]
self.recompute_norm()
def save(self, file_path):
print( "warning! directly save folder from dbtype NaiveDB has not been implemented yet, try use role_from_hf to load role instead" )
def load(self, file_path):
print( "warning! directly load folder from dbtype NaiveDB has not been implemented yet, try use role_from_hf to load role instead" )
def recompute_norm( self ):
# 补全这部分代码,self.norms 分别存储每个vector的l2 norm
# 计算每个向量的L2范数
self.norms = [sqrt(sum([x**2 for x in vec])) for vec in self.vecs]
def get_stories_with_id(self, ids ):
return [self.stories[i] for i in ids]
def clean_flag(self):
self.flags = [True for _ in self.stories]
def disable_story_with_ids(self, close_ids ):
for id in close_ids:
self.flags[id] = False
def close_last_search(self):
for id in self.last_search_ids:
self.flags[id] = False
def search(self, query_vector , n_results):
if self.verbose:
print("call search")
if len(self.norms) != len(self.vecs):
self.recompute_norm()
# 计算查询向量的范数
query_norm = sqrt(sum([x**2 for x in query_vector]))
idxs = list(range(len(self.vecs)))
# 计算余弦相似度
similarities = []
for vec, norm, idx in zip(self.vecs, self.norms, idxs ):
if len(self.flags) == len(self.vecs) and not self.flags[idx]:
continue
dot_product = sum(q * v for q, v in zip(query_vector, vec))
if query_norm < 1e-20:
similarities.append( (random.random(), idx) )
continue
cosine_similarity = dot_product / (query_norm * norm)
similarities.append( ( cosine_similarity, idx) )
# 获取最相似的n_results个结果, 使用第0个字段进行排序
similarities.sort(key=lambda x: x[0], reverse=True)
self.last_search_ids = [x[1] for x in similarities[:n_results]]
top_indices = [x[1] for x in similarities[:n_results]]
return top_indices
|