Spaces:
Sleeping
Sleeping
import json, time, os, sys, glob | |
import urllib | |
import shutil | |
import warnings | |
import copy | |
import random | |
import re | |
import os.path | |
import torch | |
import ray | |
import jax | |
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
import jax.numpy as jnp | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
import colabfold as cf | |
import plotly.graph_objects as go | |
import torch.nn as nn | |
import torch.nn.functional as F | |
if "/home/user/app/af_backprop" not in sys.path: | |
sys.path.append("/home/user/app/af_backprop") | |
# local only | |
if "/home/duerr/phd/08_Code/ProteinMPNN/af_backprop" not in sys.path: | |
sys.path.append("/home/duerr/phd/08_Code/ProteinMPNN/af_backprop") | |
from torch import optim | |
from torch.utils.data import DataLoader | |
from torch.utils.data.dataset import random_split, Subset | |
from moleculekit.molecule import Molecule | |
from alphafold.common import protein | |
from alphafold.data import pipeline | |
from alphafold.model import data, config | |
from alphafold.model import model as afmodel | |
from alphafold.common import residue_constants | |
from utils import * | |
sys.path.append("/home/user/app/ProteinMPNN/vanilla_proteinmpnn") | |
sys.path.append("/home/duerr/phd/08_Code/ProteinMPNN/ProteinMPNN/vanilla_proteinmpnn") | |
tf.config.set_visible_devices([], "GPU") | |
def chain_break(idx_res, Ls, length=200): | |
# Minkyung's code | |
# add big enough number to residue index to indicate chain breaks | |
L_prev = 0 | |
for L_i in Ls[:-1]: | |
idx_res[L_prev + L_i :] += length | |
L_prev += L_i | |
return idx_res | |
def clear_mem(): | |
backend = jax.lib.xla_bridge.get_backend() | |
for buf in backend.live_buffers(): | |
buf.delete() | |
print("Is cuda available",torch.cuda.is_available()) | |
def setup_af(seq, model_name="model_5_ptm"): | |
clear_mem() | |
# setup model | |
cfg = config.model_config("model_5_ptm") | |
cfg.model.num_recycle = 0 | |
cfg.data.common.num_recycle = 0 | |
cfg.data.eval.max_msa_clusters = 1 | |
cfg.data.common.max_extra_msa = 1 | |
cfg.data.eval.masked_msa_replace_fraction = 0 | |
cfg.model.global_config.subbatch_size = None | |
if os.path.exists("/home/duerr"): | |
datadir = "/home/duerr/phd/08_Code/ProteinMPNN" | |
else: | |
datadir = "/home/user/app/" | |
model_params = data.get_model_haiku_params(model_name=model_name, data_dir=datadir) | |
model_runner = afmodel.RunModel(cfg, model_params, is_training=False) | |
Ls = [len(s) for s in seq.split("/")] | |
seq = re.sub("[^A-Z]", "", seq.upper()) | |
length = len(seq) | |
feature_dict = { | |
**pipeline.make_sequence_features( | |
sequence=seq, description="none", num_res=length | |
), | |
**pipeline.make_msa_features(msas=[[seq]], deletion_matrices=[[[0] * length]]), | |
} | |
feature_dict["residue_index"] = chain_break(feature_dict["residue_index"], Ls) | |
inputs = model_runner.process_features(feature_dict, random_seed=0) | |
def runner(seq, opt): | |
# update sequence | |
inputs = opt["inputs"] | |
inputs.update(opt["prev"]) | |
update_seq(seq, inputs) | |
update_aatype(inputs["target_feat"][..., 1:], inputs) | |
# mask prediction | |
mask = seq.sum(-1) | |
inputs["seq_mask"] = inputs["seq_mask"].at[:].set(mask) | |
inputs["msa_mask"] = inputs["msa_mask"].at[:].set(mask) | |
inputs["residue_index"] = jnp.where(mask == 1, inputs["residue_index"], 0) | |
# get prediction | |
key = jax.random.PRNGKey(0) | |
outputs = model_runner.apply(opt["params"], key, inputs) | |
prev = { | |
"init_msa_first_row": outputs["representations"]["msa_first_row"][None], | |
"init_pair": outputs["representations"]["pair"][None], | |
"init_pos": outputs["structure_module"]["final_atom_positions"][None], | |
} | |
aux = { | |
"final_atom_positions": outputs["structure_module"]["final_atom_positions"], | |
"final_atom_mask": outputs["structure_module"]["final_atom_mask"], | |
"plddt": get_plddt(outputs), | |
"pae": get_pae(outputs), | |
"inputs": inputs, | |
"prev": prev, | |
} | |
return aux | |
return jax.jit(runner), {"inputs": inputs, "params": model_params} | |
def make_tied_positions_for_homomers(pdb_dict_list): | |
my_dict = {} | |
for result in pdb_dict_list: | |
all_chain_list = sorted( | |
[item[-1:] for item in list(result) if item[:9] == "seq_chain"] | |
) # A, B, C, ... | |
tied_positions_list = [] | |
chain_length = len(result[f"seq_chain_{all_chain_list[0]}"]) | |
for i in range(1, chain_length + 1): | |
temp_dict = {} | |
for j, chain in enumerate(all_chain_list): | |
temp_dict[chain] = [i] # needs to be a list | |
tied_positions_list.append(temp_dict) | |
my_dict[result["name"]] = tied_positions_list | |
return my_dict | |
def align_structures(pdb1, pdb2, lenRes): | |
"""Take two structure and superimpose pdb1 on pdb2""" | |
import Bio.PDB | |
import subprocess | |
pdb_parser = Bio.PDB.PDBParser(QUIET=True) | |
# Get the structures | |
ref_structure = pdb_parser.get_structure("samle", pdb1) | |
sample_structure = pdb_parser.get_structure("reference", pdb2) | |
aligner = Bio.PDB.CEAligner() | |
aligner.set_reference(ref_structure) | |
aligner.align(sample_structure) | |
io = Bio.PDB.PDBIO() | |
io.set_structure(ref_structure) | |
io.save(f"reference.pdb") | |
# Doing this to get around biopython CEALIGN bug | |
subprocess.call("pymol -c -Q -r cealign.pml", shell=True) | |
return aligner.rms, "reference.pdb", "out_aligned.pdb" | |
def save_pdb(outs, filename, LEN): | |
"""save pdb coordinates""" | |
p = { | |
"residue_index": outs["inputs"]["residue_index"][0][:LEN], | |
"aatype": outs["inputs"]["aatype"].argmax(-1)[0][:LEN], | |
"atom_positions": outs["final_atom_positions"][:LEN], | |
"atom_mask": outs["final_atom_mask"][:LEN], | |
} | |
b_factors = 100.0 * outs["plddt"][:LEN, None] * p["atom_mask"] | |
p = protein.Protein(**p, b_factors=b_factors) | |
pdb_lines = protein.to_pdb(p) | |
with open(filename, "w") as f: | |
f.write(pdb_lines) | |
def run_alphafold(sequence, num_recycles): | |
recycles = num_recycles | |
RUNNER, OPT = setup_af(sequence) | |
SEQ = re.sub("[^A-Z]", "", sequence.upper()) | |
MAX_LEN = len(SEQ) | |
LEN = len(SEQ) | |
x = np.array([residue_constants.restype_order.get(aa, -1) for aa in SEQ]) | |
x = np.pad(x, [0, MAX_LEN - LEN], constant_values=-1) | |
x = jax.nn.one_hot(x, 20) | |
OPT["prev"] = { | |
"init_msa_first_row": np.zeros([1, MAX_LEN, 256]), | |
"init_pair": np.zeros([1, MAX_LEN, MAX_LEN, 128]), | |
"init_pos": np.zeros([1, MAX_LEN, 37, 3]), | |
} | |
positions = [] | |
plddts = [] | |
for r in range(recycles + 1): | |
outs = RUNNER(x, OPT) | |
outs = jax.tree_map(lambda x: np.asarray(x), outs) | |
positions.append(outs["prev"]["init_pos"][0, :LEN]) | |
plddts.append(outs["plddt"][:LEN]) | |
OPT["prev"] = outs["prev"] | |
if recycles > 0: | |
print(r, plddts[-1].mean()) | |
if os.path.exists("/home/duerr/phd/08_Code/ProteinMPNN"): | |
save_pdb(outs, "/home/duerr/phd/08_Code/ProteinMPNN/out.pdb", LEN) | |
else: | |
save_pdb(outs, "/home/user/app/out.pdb", LEN) | |
return plddts, outs["pae"], LEN | |
if os.path.exists("/home/duerr/phd/08_Code/ProteinMPNN"): | |
path_to_model_weights = "/home/duerr/phd/08_Code/ProteinMPNN/ProteinMPNN/vanilla_proteinmpnn/vanilla_model_weights" | |
else: | |
path_to_model_weights = ( | |
"/home/user/app/ProteinMPNN/vanilla_proteinmpnn/vanilla_model_weights" | |
) | |
def setup_proteinmpnn(model_name="v_48_020", backbone_noise=0.00): | |
from protein_mpnn_utils import ( | |
loss_nll, | |
loss_smoothed, | |
gather_edges, | |
gather_nodes, | |
gather_nodes_t, | |
cat_neighbors_nodes, | |
_scores, | |
_S_to_seq, | |
tied_featurize, | |
parse_PDB, | |
) | |
from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN | |
device = torch.device( | |
"cpu" | |
) # torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu") #fix for memory issues | |
# ProteinMPNN model name: v_48_002, v_48_010, v_48_020, v_48_030, v_32_002, v_32_010; v_32_020, v_32_030; v_48_010=version with 48 edges 0.10A noise | |
# Standard deviation of Gaussian noise to add to backbone atoms | |
hidden_dim = 128 | |
num_layers = 3 | |
model_folder_path = path_to_model_weights | |
if model_folder_path[-1] != "/": | |
model_folder_path = model_folder_path + "/" | |
checkpoint_path = model_folder_path + f"{model_name}.pt" | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
noise_level_print = checkpoint["noise_level"] | |
model = ProteinMPNN( | |
num_letters=21, | |
node_features=hidden_dim, | |
edge_features=hidden_dim, | |
hidden_dim=hidden_dim, | |
num_encoder_layers=num_layers, | |
num_decoder_layers=num_layers, | |
augment_eps=backbone_noise, | |
k_neighbors=checkpoint["num_edges"], | |
) | |
model.to(device) | |
model.load_state_dict(checkpoint["model_state_dict"]) | |
model.eval() | |
return model, device | |
def get_pdb(pdb_code="", filepath=""): | |
if pdb_code is None or pdb_code == "": | |
try: | |
return filepath.name | |
except AttributeError as e: | |
return None | |
else: | |
os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb") | |
return f"{pdb_code}.pdb" | |
def preprocess_mol(pdb_code="", filepath=""): | |
if pdb_code is None or pdb_code == "": | |
try: | |
mol = Molecule(filepath.name) | |
except AttributeError as e: | |
return None | |
else: | |
mol = Molecule(pdb_code) | |
mol.write('original.pdb') | |
# clean messy files and only include protein itself | |
mol.filter("protein") | |
# renumber using moleculekit 0...len(protein) | |
df = mol.renumberResidues(returnMapping=True) | |
# add proteinMPNN index col which used 1..len(chain), 1...len(chain) | |
indexes = [] | |
for chain, g in df.groupby("chain"): | |
j = 1 | |
for i, row in g.iterrows(): | |
indexes.append(j) | |
j += 1 | |
df["proteinMPNN_index"] = indexes | |
mol.write("cleaned.pdb") | |
return "cleaned.pdb", df | |
def assign_sasa(mol): | |
from moleculekit.projections.metricsasa import MetricSasa | |
metr = MetricSasa( | |
mode="residue", filtersel="protein" | |
) | |
sasaR = metr.project(mol)[0] | |
is_prot = mol.atomselect("protein") | |
resids=pd.DataFrame.from_dict({"resid":mol.resid, "is_prot":is_prot}) | |
new_masses=[] | |
i_without_non_prot = 0 | |
for i, g in resids.groupby((resids['resid'].shift() != resids['resid']).cumsum()): | |
if g["is_prot"].unique()[0]==True: | |
g["sasa"]=sasaR[i_without_non_prot] | |
i_without_non_prot+=1 | |
else: | |
g["sasa"]=0 | |
new_masses.extend(list(g.sasa)) | |
return np.array(new_masses) | |
def process_atomsel(atomsel): | |
"""everything lowercase and replace some keywords not relevant for protein design""" | |
atomsel=re.sub('sasa', 'mass',atomsel, flags=re.I) | |
atomsel=re.sub('plddt', 'beta',atomsel, flags=re.I) | |
return atomsel | |
def make_fixed_positions_dict(atomsel, residue_index_df): | |
# we use the uploaded file for the selection | |
mol = Molecule('original.pdb') | |
# use index for selection as resids will change | |
# set sasa to 0 for all non protein atoms (all non protein atoms are deleted later) | |
mol.masses = assign_sasa(mol) | |
print(mol.masses.shape) | |
print(assign_sasa(mol).shape) | |
atomsel = process_atomsel("chain B or (chain A and Sasa < 30)") | |
selected_residues = mol.get("index",atomsel) | |
# clean up | |
mol.filter("protein") | |
mol.renumberResidues() | |
# based on selected index now get resids | |
selected_residues = [str(i) for i in selected_residues] | |
if len(selected_residues)==0: | |
return None, [] | |
selected_residues_str = " ".join(selected_residues) | |
selected_residues=set(mol.get('resid', sel=f"index {selected_residues_str}")) | |
# use the proteinMPNN index nomenclature to assemble fixed_positions_dict | |
fixed_positions_df = residue_index_df[residue_index_df['new_resid'].isin(selected_residues)] | |
chains = set(mol.get('chain', sel="all")) | |
fixed_position_dict = {'cleaned':{}} | |
#store the selected residues in a list for the visualization later with cleaned.pdb | |
selected_residues = list(fixed_positions_df['new_resid']) | |
for c in chains: | |
fixed_position_dict['cleaned'][c]=[] | |
for i, row in fixed_positions_df.iterrows(): | |
fixed_position_dict['cleaned'][row['chain']].append(row['proteinMPNN_index']) | |
return fixed_position_dict, selected_residues | |
def update( | |
inp, | |
file, | |
designed_chain, | |
fixed_chain, | |
homomer, | |
num_seqs, | |
sampling_temp, | |
model_name, | |
backbone_noise, | |
atomsel | |
): | |
from protein_mpnn_utils import ( | |
loss_nll, | |
loss_smoothed, | |
gather_edges, | |
gather_nodes, | |
gather_nodes_t, | |
cat_neighbors_nodes, | |
_scores, | |
_S_to_seq, | |
tied_featurize, | |
parse_PDB, | |
) | |
from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN | |
# pdb_path = get_pdb(pdb_code=inp, filepath=file) | |
pdb_path, mol_index = preprocess_mol(pdb_code=inp, filepath=file) | |
if pdb_path == None: | |
return "Error processing PDB" | |
model, device = setup_proteinmpnn( | |
model_name=model_name, backbone_noise=backbone_noise | |
) | |
if designed_chain == "": | |
designed_chain_list = [] | |
else: | |
designed_chain_list = re.sub("[^A-Za-z]+", ",", designed_chain).split(",") | |
if fixed_chain == "": | |
fixed_chain_list = [] | |
else: | |
fixed_chain_list = re.sub("[^A-Za-z]+", ",", fixed_chain).split(",") | |
chain_list = list(set(designed_chain_list + fixed_chain_list)) | |
num_seq_per_target = num_seqs | |
save_score = 0 # 0 for False, 1 for True; save score=-log_prob to npy files | |
save_probs = ( | |
0 # 0 for False, 1 for True; save MPNN predicted probabilites per position | |
) | |
score_only = 0 # 0 for False, 1 for True; score input backbone-sequence pairs | |
conditional_probs_only = 0 # 0 for False, 1 for True; output conditional probabilities p(s_i given the rest of the sequence and backbone) | |
conditional_probs_only_backbone = 0 # 0 for False, 1 for True; if true output conditional probabilities p(s_i given backbone) | |
batch_size = 1 # Batch size; can set higher for titan, quadro GPUs, reduce this if running out of GPU memory | |
max_length = 20000 # Max sequence length | |
out_folder = "." # Path to a folder to output sequences, e.g. /home/out/ | |
jsonl_path = "" # Path to a folder with parsed pdb into jsonl | |
omit_AAs = "X" # Specify which amino acids should be omitted in the generated sequence, e.g. 'AC' would omit alanine and cystine. | |
pssm_multi = 0.0 # A value between [0.0, 1.0], 0.0 means do not use pssm, 1.0 ignore MPNN predictions | |
pssm_threshold = 0.0 # A value between -inf + inf to restric per position AAs | |
pssm_log_odds_flag = 0 # 0 for False, 1 for True | |
pssm_bias_flag = 0 # 0 for False, 1 for True | |
folder_for_outputs = out_folder | |
NUM_BATCHES = num_seq_per_target // batch_size | |
BATCH_COPIES = batch_size | |
temperatures = [sampling_temp] | |
omit_AAs_list = omit_AAs | |
alphabet = "ACDEFGHIKLMNPQRSTVWYX" | |
omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32) | |
chain_id_dict = None | |
if atomsel == "": | |
fixed_positions_dict, selected_residues = None, [] | |
else: | |
fixed_positions_dict, selected_residues=make_fixed_positions_dict(atomsel, mol_index) | |
pssm_dict = None | |
omit_AA_dict = None | |
bias_AA_dict = None | |
bias_by_res_dict = None | |
bias_AAs_np = np.zeros(len(alphabet)) | |
############################################################### | |
pdb_dict_list = parse_PDB(pdb_path, input_chain_list=chain_list) | |
dataset_valid = StructureDatasetPDB( | |
pdb_dict_list, truncate=None, max_length=max_length | |
) | |
if homomer: | |
tied_positions_dict = make_tied_positions_for_homomers(pdb_dict_list) | |
else: | |
tied_positions_dict = None | |
chain_id_dict = {} | |
chain_id_dict[pdb_dict_list[0]["name"]] = (designed_chain_list, fixed_chain_list) | |
with torch.no_grad(): | |
for ix, prot in enumerate(dataset_valid): | |
score_list = [] | |
all_probs_list = [] | |
all_log_probs_list = [] | |
S_sample_list = [] | |
batch_clones = [copy.deepcopy(prot) for i in range(BATCH_COPIES)] | |
( | |
X, | |
S, | |
mask, | |
lengths, | |
chain_M, | |
chain_encoding_all, | |
chain_list_list, | |
visible_list_list, | |
masked_list_list, | |
masked_chain_length_list_list, | |
chain_M_pos, | |
omit_AA_mask, | |
residue_idx, | |
dihedral_mask, | |
tied_pos_list_of_lists_list, | |
pssm_coef, | |
pssm_bias, | |
pssm_log_odds_all, | |
bias_by_res_all, | |
tied_beta, | |
) = tied_featurize( | |
batch_clones, | |
device, | |
chain_id_dict, | |
fixed_positions_dict, | |
omit_AA_dict, | |
tied_positions_dict, | |
pssm_dict, | |
bias_by_res_dict, | |
) | |
pssm_log_odds_mask = ( | |
pssm_log_odds_all > pssm_threshold | |
).float() # 1.0 for true, 0.0 for false | |
name_ = batch_clones[0]["name"] | |
randn_1 = torch.randn(chain_M.shape, device=X.device) | |
log_probs = model( | |
X, | |
S, | |
mask, | |
chain_M * chain_M_pos, | |
residue_idx, | |
chain_encoding_all, | |
randn_1, | |
) | |
mask_for_loss = mask * chain_M * chain_M_pos | |
scores = _scores(S, log_probs, mask_for_loss) | |
native_score = scores.cpu().data.numpy() | |
message = "" | |
seq_list = [] | |
for temp in temperatures: | |
for j in range(NUM_BATCHES): | |
randn_2 = torch.randn(chain_M.shape, device=X.device) | |
if tied_positions_dict == None: | |
sample_dict = model.sample( | |
X, | |
randn_2, | |
S, | |
chain_M, | |
chain_encoding_all, | |
residue_idx, | |
mask=mask, | |
temperature=temp, | |
omit_AAs_np=omit_AAs_np, | |
bias_AAs_np=bias_AAs_np, | |
chain_M_pos=chain_M_pos, | |
omit_AA_mask=omit_AA_mask, | |
pssm_coef=pssm_coef, | |
pssm_bias=pssm_bias, | |
pssm_multi=pssm_multi, | |
pssm_log_odds_flag=bool(pssm_log_odds_flag), | |
pssm_log_odds_mask=pssm_log_odds_mask, | |
pssm_bias_flag=bool(pssm_bias_flag), | |
bias_by_res=bias_by_res_all, | |
) | |
S_sample = sample_dict["S"] | |
else: | |
sample_dict = model.tied_sample( | |
X, | |
randn_2, | |
S, | |
chain_M, | |
chain_encoding_all, | |
residue_idx, | |
mask=mask, | |
temperature=temp, | |
omit_AAs_np=omit_AAs_np, | |
bias_AAs_np=bias_AAs_np, | |
chain_M_pos=chain_M_pos, | |
omit_AA_mask=omit_AA_mask, | |
pssm_coef=pssm_coef, | |
pssm_bias=pssm_bias, | |
pssm_multi=pssm_multi, | |
pssm_log_odds_flag=bool(pssm_log_odds_flag), | |
pssm_log_odds_mask=pssm_log_odds_mask, | |
pssm_bias_flag=bool(pssm_bias_flag), | |
tied_pos=tied_pos_list_of_lists_list[0], | |
tied_beta=tied_beta, | |
bias_by_res=bias_by_res_all, | |
) | |
# Compute scores | |
S_sample = sample_dict["S"] | |
log_probs = model( | |
X, | |
S_sample, | |
mask, | |
chain_M * chain_M_pos, | |
residue_idx, | |
chain_encoding_all, | |
randn_2, | |
use_input_decoding_order=True, | |
decoding_order=sample_dict["decoding_order"], | |
) | |
mask_for_loss = mask * chain_M * chain_M_pos | |
scores = _scores(S_sample, log_probs, mask_for_loss) | |
scores = scores.cpu().data.numpy() | |
all_probs_list.append(sample_dict["probs"].cpu().data.numpy()) | |
all_log_probs_list.append(log_probs.cpu().data.numpy()) | |
S_sample_list.append(S_sample.cpu().data.numpy()) | |
for b_ix in range(BATCH_COPIES): | |
masked_chain_length_list = masked_chain_length_list_list[b_ix] | |
masked_list = masked_list_list[b_ix] | |
seq_recovery_rate = torch.sum( | |
torch.sum( | |
torch.nn.functional.one_hot(S[b_ix], 21) | |
* torch.nn.functional.one_hot(S_sample[b_ix], 21), | |
axis=-1, | |
) | |
* mask_for_loss[b_ix] | |
) / torch.sum(mask_for_loss[b_ix]) | |
seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix]) | |
score = scores[b_ix] | |
score_list.append(score) | |
native_seq = _S_to_seq(S[b_ix], chain_M[b_ix]) | |
if b_ix == 0 and j == 0 and temp == temperatures[0]: | |
start = 0 | |
end = 0 | |
list_of_AAs = [] | |
for mask_l in masked_chain_length_list: | |
end += mask_l | |
list_of_AAs.append(native_seq[start:end]) | |
start = end | |
native_seq = "".join( | |
list(np.array(list_of_AAs)[np.argsort(masked_list)]) | |
) | |
l0 = 0 | |
for mc_length in list( | |
np.array(masked_chain_length_list)[ | |
np.argsort(masked_list) | |
] | |
)[:-1]: | |
l0 += mc_length | |
native_seq = native_seq[:l0] + "/" + native_seq[l0:] | |
l0 += 1 | |
sorted_masked_chain_letters = np.argsort( | |
masked_list_list[0] | |
) | |
print_masked_chains = [ | |
masked_list_list[0][i] | |
for i in sorted_masked_chain_letters | |
] | |
sorted_visible_chain_letters = np.argsort( | |
visible_list_list[0] | |
) | |
print_visible_chains = [ | |
visible_list_list[0][i] | |
for i in sorted_visible_chain_letters | |
] | |
native_score_print = np.format_float_positional( | |
np.float32(native_score.mean()), | |
unique=False, | |
precision=4, | |
) | |
line = ">{}, score={}, fixed_chains={}, designed_chains={}, model_name={}\n{}\n".format( | |
name_, | |
native_score_print, | |
print_visible_chains, | |
print_masked_chains, | |
model_name, | |
native_seq, | |
) | |
message += f"{line}\n" | |
start = 0 | |
end = 0 | |
list_of_AAs = [] | |
for mask_l in masked_chain_length_list: | |
end += mask_l | |
list_of_AAs.append(seq[start:end]) | |
start = end | |
seq = "".join( | |
list(np.array(list_of_AAs)[np.argsort(masked_list)]) | |
) | |
# add non designed chains to predicted sequence | |
l0 = 0 | |
for mc_length in list( | |
np.array(masked_chain_length_list)[np.argsort(masked_list)] | |
)[:-1]: | |
l0 += mc_length | |
seq = seq[:l0] + "/" + seq[l0:] | |
l0 += 1 | |
score_print = np.format_float_positional( | |
np.float32(score), unique=False, precision=4 | |
) | |
seq_rec_print = np.format_float_positional( | |
np.float32(seq_recovery_rate.detach().cpu().numpy()), | |
unique=False, | |
precision=4, | |
) | |
chain_s = "" | |
if len(visible_list_list[0]) > 0: | |
chain_M_bool = chain_M.bool() | |
not_designed = _S_to_seq(S[b_ix], ~chain_M_bool[b_ix]) | |
labels = ( | |
chain_encoding_all[b_ix][~chain_M_bool[b_ix]] | |
.detach() | |
.cpu() | |
.numpy() | |
) | |
for c in set(labels): | |
chain_s += "/" | |
nd_mask = labels == c | |
for i, x in enumerate(not_designed): | |
if nd_mask[i]: | |
chain_s += x | |
line = ( | |
">T={}, sample={}, score={}, seq_recovery={}\n{}\n".format( | |
temp, b_ix, score_print, seq_rec_print, seq | |
) | |
) | |
seq_list.append(seq + chain_s) | |
message += f"{line}\n" | |
if fixed_positions_dict!=None: | |
message += f"\nfixed positions:* {fixed_positions_dict['cleaned']} \n\n*uses CHAIN:[1..len(chain)] residue numbering" | |
# somehow sequences still contain X, remove again | |
for i, x in enumerate(seq_list): | |
for aa in omit_AAs: | |
seq_list[i] = x.replace(aa, "") | |
all_probs_concat = np.concatenate(all_probs_list) | |
all_log_probs_concat = np.concatenate(all_log_probs_list) | |
np.savetxt("all_probs_concat.csv", all_probs_concat.mean(0).T, delimiter=",") | |
np.savetxt( | |
"all_log_probs_concat.csv", | |
np.exp(all_log_probs_concat).mean(0).T, | |
delimiter=",", | |
) | |
S_sample_concat = np.concatenate(S_sample_list) | |
fig = px.imshow( | |
np.exp(all_log_probs_concat).mean(0).T, | |
labels=dict(x="positions", y="amino acids", color="probability"), | |
y=list(alphabet), | |
template="simple_white", | |
) | |
fig.update_xaxes(side="top") | |
fig_tadjusted = px.imshow( | |
all_probs_concat.mean(0).T, | |
labels=dict(x="positions", y="amino acids", color="probability"), | |
y=list(alphabet), | |
template="simple_white", | |
) | |
fig_tadjusted.update_xaxes(side="top") | |
return ( | |
message, | |
fig, | |
fig_tadjusted, | |
gr.File.update(value="all_log_probs_concat.csv", visible=True), | |
gr.File.update(value="all_probs_concat.csv", visible=True), | |
pdb_path, | |
gr.Dropdown.update(choices=seq_list), | |
selected_residues | |
) | |
def update_AF(startsequence, pdb, num_recycles,selectedResidues): | |
# # run alphafold using ray | |
# plddts, pae, num_res = run_alphafold( | |
# startsequence, num_recycles | |
# ) | |
if len(startsequence) > 700: | |
return ( | |
""" | |
<div class="p-4 mb-4 text-sm text-yellow-700 bg-orange-50 rounded-lg" role="alert"> | |
<span class="font-medium">Sorry!</span> Currently only small proteins can be run in the server in order to reduce wait time. Try a protein <700 aa. Bigger proteins you can run on <a href="https://github.com/sokrypton/colabfold">ColabFold</a> | |
</div> | |
""", | |
plt.figure(), | |
plt.figure(), | |
) | |
plddts, pae, num_res = ray.get(run_alphafold.remote(startsequence, num_recycles)) | |
x = np.arange(10) | |
plots = [] | |
for recycle, plddts_val in enumerate(plddts): | |
if recycle == 0 or recycle == len(plddts) - 1: | |
visible = True | |
else: | |
visible = "legendonly" | |
plots.append( | |
go.Scatter( | |
x=np.arange(len(plddts_val)), | |
y=plddts_val, | |
hovertemplate="<i>pLDDT</i>: %{y:.2f} <br><i>Residue index:</i> %{x}<br>Recycle " | |
+ str(recycle), | |
name=f"Recycle {recycle}", | |
visible=visible, | |
) | |
) | |
plotAF_plddt = go.Figure(data=plots) | |
plotAF_plddt.update_layout( | |
title="pLDDT", | |
xaxis_title="Residue index", | |
yaxis_title="pLDDT", | |
height=500, | |
template="simple_white", | |
legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99), | |
) | |
plt.figure() | |
plt.title("Predicted Aligned Error") | |
Ln = pae.shape[0] | |
plt.imshow(pae, cmap="bwr", vmin=0, vmax=30, extent=(0, Ln, Ln, 0)) | |
plt.colorbar() | |
plt.xlabel("Scored residue") | |
plt.ylabel("Aligned residue") | |
plt.savefig("pae_plot.png", dpi=300) | |
plt.close() | |
# doesnt work (likely because too large) | |
# plotAF_pae = px.imshow( | |
# pae, | |
# labels=dict(x="Scored residue", y="Aligned residue", color=""), | |
# template="simple_white", | |
# y=np.arange(len(plddts_val)), | |
# ) | |
# plotAF_pae.write_html("test.html") | |
# plotAF_pae.update_layout(title="Predicted Aligned Error", template="simple_white") | |
return molecule(pdb, "out.pdb", num_res, selectedResidues), plotAF_plddt, "pae_plot.png" | |
def read_mol(molpath): | |
with open(molpath, "r") as fp: | |
lines = fp.readlines() | |
mol = "" | |
for l in lines: | |
mol += l | |
return mol | |
def molecule(pdb, afpdb, num_res, selectedResidues): | |
rms, input_pdb, aligned_pdb = align_structures(pdb, afpdb, num_res) | |
mol = read_mol(input_pdb) | |
pred_mol = read_mol(aligned_pdb) | |
x = ( | |
"""<!DOCTYPE html> | |
<html> | |
<head> | |
<meta http-equiv="content-type" content="text/html; charset=UTF-8" /> | |
<link rel="stylesheet" href="https://unpkg.com/[email protected]/dist/flowbite.min.css" /> | |
<style> | |
body{ | |
font-family:sans-serif | |
} | |
.mol-container { | |
width: 100%; | |
height: 700px; | |
position: relative; | |
} | |
.space-x-2 > * + *{ | |
margin-left: 0.5rem; | |
} | |
.p-1{ | |
padding:0.5rem; | |
} | |
.w-4{ | |
width:1rem; | |
} | |
.h-4{ | |
height:1rem; | |
} | |
.mt-4{ | |
margin-top:1rem; | |
} | |
select{ | |
background-image:None; | |
} | |
</style> | |
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script> | |
</head> | |
<body> | |
<div id="container" class="mol-container"></div> | |
<div class="flex"> | |
<div class="px-4"> | |
<label for="sidechain" class="relative inline-flex items-center mb-4 cursor-pointer "> | |
<input id="sidechain" type="checkbox" class="sr-only peer"> | |
<div class="w-11 h-6 bg-gray-200 rounded-full peer peer-focus:ring-4 peer-focus:ring-blue-300 dark:peer-focus:ring-blue-800 dark:bg-gray-700 peer-checked:after:translate-x-full peer-checked:after:border-white after:absolute after:top-0.5 after:left-[2px] after:bg-white after:border-gray-300 after:border after:rounded-full after:h-5 after:w-5 after:transition-all dark:border-gray-600 peer-checked:bg-blue-600"></div> | |
<span class="ml-3 text-sm font-medium text-gray-900 dark:text-gray-300">Show side chains</span> | |
</label> | |
</div> | |
<div class="px-4"> | |
<label for="startstructure" class="relative inline-flex items-center mb-4 cursor-pointer "> | |
<input id="startstructure" type="checkbox" class="sr-only peer" checked> | |
<div class="w-11 h-6 bg-gray-200 rounded-full peer peer-focus:ring-4 peer-focus:ring-blue-300 dark:peer-focus:ring-blue-800 dark:bg-gray-700 peer-checked:after:translate-x-full peer-checked:after:border-white after:absolute after:top-0.5 after:left-[2px] after:bg-white after:border-gray-300 after:border after:rounded-full after:h-5 after:w-5 after:transition-all dark:border-gray-600 peer-checked:bg-blue-600"></div> | |
<span class="ml-3 text-sm font-medium text-gray-900 dark:text-gray-300">Show input structure</span> | |
</label> | |
</div> | |
<button type="button" class="text-gray-900 bg-white hover:bg-gray-100 border border-gray-200 focus:ring-4 focus:outline-none focus:ring-gray-100 font-medium rounded-lg text-sm px-5 py-2.5 text-center inline-flex items-center dark:focus:ring-gray-600 dark:bg-gray-800 dark:border-gray-700 dark:text-white dark:hover:bg-gray-700 mr-2 mb-2" id="download"> | |
<svg class="w-6 h-6 mr-2 -ml-1" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M4 16v1a3 3 0 003 3h10a3 3 0 003-3v-1m-4-4l-4 4m0 0l-4-4m4 4V4"></path></svg> | |
Download predicted structure | |
</button> | |
</div> | |
<div class="text-sm"> | |
<div> RMSD AlphaFold vs. native: """ | |
+ f"{rms:.2f}" | |
+ """Å computed using CEAlign on the aligned fragment</div> | |
</div> | |
<div class="text-sm flex items-start"> | |
<div class="w-1/2"> | |
<div class="font-medium mt-4 flex items-center space-x-2"><b>AF2 model of redesigned sequence</b></div> | |
<div>AlphaFold model confidence:</div> | |
<div class="flex space-x-2 py-1"><span class="w-4 h-4" style="background-color: rgb(0, 83, 214);"> </span><span class="legendlabel">Very high | |
(pLDDT > 90)</span></div> | |
<div class="flex space-x-2 py-1"><span class="w-4 h-4" style="background-color: rgb(101, 203, 243);"> </span><span class="legendlabel">Confident | |
(90 > pLDDT > 70)</span></div> | |
<div class="flex space-x-2 py-1"><span class="w-4 h-4" style="background-color: rgb(255, 219, 19);"> </span><span class="legendlabel">Low (70 > | |
pLDDT > 50)</span></div> | |
<div class="flex space-x-2 py-1"><span class="w-4 h-4" style="background-color: rgb(255, 125, 69);"> </span><span class="legendlabel">Very low | |
(pLDDT < 50)</span></div> | |
<div class="row column legendDesc"> AlphaFold produces a per-residue confidence | |
score (pLDDT) between 0 and 100. Some regions below 50 pLDDT may be unstructured in isolation. | |
</div> | |
</div> | |
<div class="w-1/2"> | |
<div class="font-medium mt-4 flex items-center space-x-2"><b>Input structure </b><span class="w-4 h-4 bg-gray-300 inline-flex" ></span></div> | |
<div class="flex space-x-2 py-1"><span class="w-4 h-4" style="background-color:hotpink" > </span><span class="legendlabel">Fixed positions</span></div> | |
</div> | |
</div> | |
<script> | |
let viewer = null; | |
let voldata = null; | |
$(document).ready(function () { | |
let element = $("#container"); | |
let config = { backgroundColor: "white" }; | |
viewer = $3Dmol.createViewer( element, config ); | |
viewer.ui.initiateUI(); | |
let data = `""" | |
+ pred_mol | |
+ """` | |
let pdb = `""" | |
+ mol | |
+ """` | |
viewer.addModel( data, "pdb" ); | |
viewer.addModel( pdb, "pdb" ); | |
//AlphaFold code from https://gist.github.com/piroyon/30d1c1099ad488a7952c3b21a5bebc96 | |
let colorAlpha = function (atom) { | |
if (atom.b < 50) { | |
return "OrangeRed"; | |
} else if (atom.b < 70) { | |
return "Gold"; | |
} else if (atom.b < 90) { | |
return "MediumTurquoise"; | |
} else { | |
return "Blue"; | |
} | |
}; | |
var selectedResidues = """+ | |
f"{selectedResidues}" | |
+""" | |
let colors = {} | |
for (let i=0; i<"""+str(num_res)+""";i++){ | |
if (selectedResidues.includes(i)){ | |
colors[i]="hotpink" | |
}else{ | |
colors[i]="lightgray" | |
}} | |
let colorFixedSidechain = function(atom){ | |
if (selectedResidues.includes(atom.resi)){ | |
return "hotpink" | |
}else if (atom.elem == "O"){ | |
return "red" | |
}else if (atom.elem == "N"){ | |
return "blue" | |
}else if (atom.elem == "S"){ | |
return "yellow" | |
}else{ | |
return "lightgray" | |
} | |
} | |
viewer.getModel(1).setStyle({},{ cartoon: {colorscheme:{prop:"resi",map:colors} } }) | |
viewer.getModel(0).setStyle({}, { cartoon: { colorfunc: colorAlpha } }); | |
viewer.zoomTo(); | |
viewer.render(); | |
viewer.zoom(0.8, 2000); | |
viewer.getModel(0).setHoverable({}, true, | |
function (atom, viewer, event, container) { | |
if (!atom.label) { | |
atom.label = viewer.addLabel(atom.resn+atom.resi+" pLDDT=" + atom.b, { position: atom, backgroundColor: "mintcream", fontColor: "black" }); | |
} | |
}, | |
function (atom, viewer) { | |
if (atom.label) { | |
viewer.removeLabel(atom.label); | |
delete atom.label; | |
} | |
} | |
); | |
$("#sidechain").change(function () { | |
if (this.checked) { | |
BB = ["C", "O", "N"] | |
if ($("#startstructure").prop("checked")) { | |
viewer.getModel(0).setStyle( {"and": [{resn: ["GLY", "PRO"], invert: true},{atom: BB, invert: true},]},{stick: {colorscheme: "WhiteCarbon", radius: 0.3}, cartoon: { colorfunc: colorAlpha }}); | |
viewer.getModel(1).setStyle( {"and": [{resn: ["GLY", "PRO"], invert: true},{atom: BB, invert: true},]},{stick: {colorfunc:colorFixedSidechain, radius: 0.3}, cartoon: {colorscheme:{prop:"resi",map:colors} }}); | |
}else{ | |
viewer.getModel(0).setStyle( {"and": [{resn: ["GLY", "PRO"], invert: true},{atom: BB, invert: true},]},{stick: {colorscheme: "WhiteCarbon", radius: 0.3}, cartoon: { colorfunc: colorAlpha }}); | |
viewer.getModel(1).setStyle(); | |
} | |
viewer.render() | |
} else { | |
if ($("#startstructure").prop("checked")) { | |
viewer.getModel(0).setStyle({cartoon: { colorfunc: colorAlpha }}); | |
viewer.getModel(1).setStyle({cartoon: {colorscheme:{prop:"resi",map:colors} }}); | |
}else{ | |
viewer.getModel(0).setStyle({cartoon: { colorfunc: colorAlpha }}); | |
viewer.getModel(1).setStyle(); | |
} | |
viewer.render() | |
} | |
}); | |
$("#startstructure").change(function () { | |
if (this.checked) { | |
$("#sidechain").prop( "checked", false ); | |
viewer.getModel(1).setStyle({},{cartoon: {colorscheme:{prop:"resi",map:colors} } }) | |
viewer.getModel(0).setStyle({}, { cartoon: { colorfunc: colorAlpha } }); | |
viewer.render() | |
} else { | |
$("#sidechain").prop( "checked", false ); | |
viewer.getModel(1).setStyle({},{}) | |
viewer.getModel(0).setStyle({}, { cartoon: { colorfunc: colorAlpha } }); | |
viewer.render() | |
} | |
}); | |
$("#download").click(function () { | |
download(\"""" | |
+ aligned_pdb | |
+ """\", data); | |
}) | |
}); | |
function download(filename, text) { | |
var element = document.createElement("a"); | |
element.setAttribute("href", "data:text/plain;charset=utf-8," + encodeURIComponent(text)); | |
element.setAttribute("download", filename); | |
element.style.display = "none"; | |
document.body.appendChild(element); | |
element.click(); | |
document.body.removeChild(element); | |
} | |
</script> | |
</body></html>""" | |
) | |
return f"""<iframe style="width: 800px; height: 1000px" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""" | |
def set_examples(example): | |
label, inp, designed_chain, fixed_chain, homomer, num_seqs, sampling_temp, atomsel = example | |
return [ | |
label, | |
inp, | |
designed_chain, | |
fixed_chain, | |
homomer, | |
gr.Slider.update(value=num_seqs), | |
gr.Radio.update(value=sampling_temp), | |
atomsel | |
] | |
proteinMPNN = gr.Blocks() | |
with proteinMPNN: | |
gr.Markdown("# ProteinMPNN") | |
gr.Markdown( | |
"""This model takes as input a protein structure and based on its backbone predicts new sequences that will fold into that backbone. | |
Optionally, we can run AlphaFold2 on the predicted sequence to check whether the predicted sequences adopt the same backbone (WIP). | |
""" | |
) | |
gr.Markdown("![](https://simonduerr.eu/ProteinMPNN.png)") | |
with gr.Tabs(): | |
with gr.TabItem("Input"): | |
inp = gr.Textbox( | |
placeholder="PDB Code or upload file below", label="Input structure" | |
) | |
file = gr.File(file_count="single") | |
with gr.TabItem("Settings"): | |
with gr.Row(): | |
designed_chain = gr.Textbox(value="A", label="Designed chain") | |
fixed_chain = gr.Textbox( | |
placeholder="Use commas to fix multiple chains", label="Fixed chain" | |
) | |
with gr.Row(): | |
num_seqs = gr.Slider( | |
minimum=1, maximum=50, value=1, step=1, label="Number of sequences" | |
) | |
sampling_temp = gr.Radio( | |
choices=[0.1, 0.15, 0.2, 0.25, 0.3], | |
value=0.1, | |
label="Sampling temperature", | |
) | |
gr.Markdown(""" Sampling temperature for amino acids, `T=0.0` means taking argmax, `T>>1.0` means sample randomly. Suggested values `0.1, 0.15, 0.2, 0.25, 0.3`. Higher values will lead to more diversity. | |
""" | |
) | |
with gr.Row(): | |
model_name = gr.Dropdown( | |
choices=[ | |
"v_48_002", | |
"v_48_010", | |
"v_48_020", | |
"v_48_030", | |
], | |
label="Model", | |
value="v_48_020", | |
) | |
backbone_noise = gr.Dropdown( | |
choices=[0, 0.02, 0.10, 0.20, 0.30], label="Backbone noise", value=0 | |
) | |
with gr.Row(): | |
homomer = gr.Checkbox(value=False, label="Homomer?") | |
gr.Markdown( | |
"for correct symmetric tying lenghts of homomer chains should be the same" | |
) | |
gr.Markdown('## Fixed positions') | |
gr.Markdown("""You can fix important positions in the protein. Resid should be specified with the same numbering as in the input pdb file. The fixed residues will be highlighted in the output. | |
The [VMD selection](http://www.ks.uiuc.edu/Research/vmd/vmd-1.9.2/ug/node89.html) synthax is used. You can also select based on ligands or chains in the input structure to specify interfaces to be fixed. | |
- <code>within 5 of resid 94</code> All residues that have >1 atom closer than 5 Å to any atom of residue 94 | |
- <code>name CA and within 5 of resid 94</code> All residues that have CA atom closer than 5 Å to any atom of residue 94 | |
- <code>resid 94 96 119</code> Residues 94, 94 and 119 | |
- <code>within 5 of resname ZN</code> All residues with any atom <5 Å of zinc ion | |
- <code>chain A and within 5 of chain B </code> All residues of chain A that are part of the interface with chain B | |
- <code>protein and within 5 of nucleic </code> All residues that bind to DNA (if present in structure) | |
- <code>not (chain A and within 5 of chain B) </code> only modify residues that are in the interface with the fixed chain, not further away | |
- <code>chain A or (chain B and sasa < 20) </code> Keep chain A and all core residues fixeds | |
- <code>pLDDT >70 </code> Redesign all residues with low pLDDT | |
Note that <code>sasa</code> and <code>pLDDT</code> selectors modify default VMD behavior. SASA is calculated using moleculekit and written to the mass attribute. Selections based on mass do not work. | |
pLDDT is an alias for beta, it only works correctly with structures that contain the appropriate values in the beta column of the PDB file. """) | |
atomsel = gr.Textbox(placeholder="Specify atom selection ", label="Fixed positions") | |
btn = gr.Button("Run") | |
label = gr.Textbox(label="Label", visible=False) | |
examples = gr.Dataset( | |
components=[ | |
label, | |
inp, | |
designed_chain, | |
fixed_chain, | |
homomer, | |
num_seqs, | |
sampling_temp, | |
atomsel | |
], | |
samples=[ | |
["Homomer design", "1O91", "A,B,C", "", True, 2, 0.1,""], | |
["Monomer design", "6MRR", "A", "", False, 2, 0.1,""], | |
["Redesign of Homomer to Heteromer", "3HTN", "A,B", "C", False, 2, 0.1, ""], | |
["Redesign of MID1 scaffold keeping binding site fixed", "3V1C", "A,B", "", False, 2, 0.1, "within 5 of resname ZN"], | |
["Redesign of DNA binding protein", "3JRD", "A,B", "", False, 2, 0.1, "within 8 of nucleic"], | |
["Surface Redesign of miniprotein", "7JZM", "A,B", "", False, 2, 0.1, "chain B or (chain A and sasa < 20)"], | |
], | |
) | |
gr.Markdown("# Output") | |
with gr.Tabs(): | |
with gr.TabItem("Designed sequences"): | |
out = gr.Textbox(label="Status") | |
with gr.TabItem("Amino acid probabilities"): | |
plot = gr.Plot() | |
all_log_probs = gr.File(visible=False) | |
with gr.TabItem("T adjusted probabilities"): | |
gr.Markdown("Sampling temperature adjusted amino acid probabilties") | |
plot_tadjusted = gr.Plot() | |
all_probs = gr.File(visible=False) | |
with gr.TabItem("Structure validation w/ AF2"): | |
gr.HTML( | |
""" | |
<div class="flex items-center p-2 bg-gradient-to-r from-yellow-400 via-red-500 to-pink-500 rounded-lg shadow-sm"> | |
<div class="p-3 mr-4"> | |
<svg class="w-10 h-10 px-1 text-400" viewBox="0 0 16 16"> | |
<path fill-rule="evenodd" d="M1.75 1.5a.25.25 0 00-.25.25v9.5c0 .138.112.25.25.25h2a.75.75 0 01.75.75v2.19l2.72-2.72a.75.75 0 01.53-.22h6.5a.25.25 0 00.25-.25v-9.5a.25.25 0 00-.25-.25H1.75zM0 1.75C0 .784.784 0 1.75 0h12.5C15.216 0 16 .784 16 1.75v9.5A1.75 1.75 0 0114.25 13H8.06l-2.573 2.573A1.457 1.457 0 013 14.543V13H1.75A1.75 1.75 0 010 11.25v-9.5zM9 9a1 1 0 11-2 0 1 1 0 012 0zm-.25-5.25a.75.75 0 00-1.5 0v2.5a.75.75 0 001.5 0v-2.5z"></path> | |
</svg> | |
</div> | |
<div> | |
<p class="text-base text-gray-700 dark:text-gray-200"> | |
AF2 code is experimental and relies on @sokrypton's trick to speed up compile/module runtime. Results might differ from DeepMind's published results. | |
Predictions are made using <code>model_5_ptm</code> and without MSA based on the selected single sequence (<code>designed_chain</code> + <code>fixed_chain</code>). | |
</p> | |
</div> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Row(): | |
chosen_seq = gr.Dropdown( | |
choices=[], label="Select a sequence for validation" | |
) | |
num_recycles = gr.Dropdown( | |
choices=[0, 1, 3, 5], value=3, label="num Recycles" | |
) | |
btnAF = gr.Button("Run AF2 on sequence") | |
with gr.Row(): | |
mol = gr.HTML() | |
with gr.Column(): | |
plotAF_plddt = gr.Plot(label="pLDDT") | |
# remove maxh80 class from css | |
plotAF_pae = gr.Image(label="PAE") #gr.Plot(label="PAE") | |
tempFile = gr.Variable() | |
selectedResidues = gr.Variable() | |
btn.click( | |
fn=update, | |
inputs=[ | |
inp, | |
file, | |
designed_chain, | |
fixed_chain, | |
homomer, | |
num_seqs, | |
sampling_temp, | |
model_name, | |
backbone_noise, | |
atomsel, | |
], | |
outputs=[ | |
out, | |
plot, | |
plot_tadjusted, | |
all_log_probs, | |
all_probs, | |
tempFile, | |
chosen_seq, | |
selectedResidues | |
], | |
) | |
btnAF.click( | |
fn=update_AF, | |
inputs=[chosen_seq, tempFile, num_recycles, selectedResidues], | |
outputs=[mol, plotAF_plddt, plotAF_pae], | |
) | |
examples.click(fn=set_examples, inputs=examples, outputs=examples.components) | |
gr.Markdown( | |
"""Citation: **Robust deep learning based protein sequence design using ProteinMPNN** <br> | |
Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J. Ragotte, Lukas F. Milles, Basile I. M. Wicky, Alexis Courbet, Robbert J. de Haas, Neville Bethel, Philip J. Y. Leung, Timothy F. Huddy, Sam Pellock, Doug Tischer, Frederick Chan, Brian Koepnick, Hannah Nguyen, Alex Kang, Banumathi Sankaran, Asim Bera, Neil P. King, David Baker <br> | |
bioRxiv 2022.06.03.494563; doi: [10.1101/2022.06.03.494563](https://doi.org/10.1101/2022.06.03.494563) <br><br> Server built by [@simonduerr](https://twitter.com/simonduerr) and hosted by Huggingface""" | |
) | |
ray.init(runtime_env={"working_dir": "./af_backprop"}) | |
proteinMPNN.launch(share=True, debug=True) | |