Spaces:
Running
on
T4
Running
on
T4
# Copyright 2021 DeepMind Technologies Limited | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Functions for processing confidence metrics.""" | |
from typing import Dict, Optional, Tuple | |
import numpy as np | |
import scipy.special | |
def compute_plddt(logits: np.ndarray) -> np.ndarray: | |
"""Computes per-residue pLDDT from logits. | |
Args: | |
logits: [num_res, num_bins] output from the PredictedLDDTHead. | |
Returns: | |
plddt: [num_res] per-residue pLDDT. | |
""" | |
num_bins = logits.shape[-1] | |
bin_width = 1.0 / num_bins | |
bin_centers = np.arange(start=0.5 * bin_width, stop=1.0, step=bin_width) | |
probs = scipy.special.softmax(logits, axis=-1) | |
predicted_lddt_ca = np.sum(probs * bin_centers[None, :], axis=-1) | |
return predicted_lddt_ca * 100 | |
def _calculate_bin_centers(breaks: np.ndarray): | |
"""Gets the bin centers from the bin edges. | |
Args: | |
breaks: [num_bins - 1] the error bin edges. | |
Returns: | |
bin_centers: [num_bins] the error bin centers. | |
""" | |
step = (breaks[1] - breaks[0]) | |
# Add half-step to get the center | |
bin_centers = breaks + step / 2 | |
# Add a catch-all bin at the end. | |
bin_centers = np.concatenate([bin_centers, [bin_centers[-1] + step]], | |
axis=0) | |
return bin_centers | |
def _calculate_expected_aligned_error( | |
alignment_confidence_breaks: np.ndarray, | |
aligned_distance_error_probs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
"""Calculates expected aligned distance errors for every pair of residues. | |
Args: | |
alignment_confidence_breaks: [num_bins - 1] the error bin edges. | |
aligned_distance_error_probs: [num_res, num_res, num_bins] the predicted | |
probs for each error bin, for each pair of residues. | |
Returns: | |
predicted_aligned_error: [num_res, num_res] the expected aligned distance | |
error for each pair of residues. | |
max_predicted_aligned_error: The maximum predicted error possible. | |
""" | |
bin_centers = _calculate_bin_centers(alignment_confidence_breaks) | |
# Tuple of expected aligned distance error and max possible error. | |
return (np.sum(aligned_distance_error_probs * bin_centers, axis=-1), | |
np.asarray(bin_centers[-1])) | |
def compute_predicted_aligned_error( | |
logits: np.ndarray, | |
breaks: np.ndarray) -> Dict[str, np.ndarray]: | |
"""Computes aligned confidence metrics from logits. | |
Args: | |
logits: [num_res, num_res, num_bins] the logits output from | |
PredictedAlignedErrorHead. | |
breaks: [num_bins - 1] the error bin edges. | |
Returns: | |
aligned_confidence_probs: [num_res, num_res, num_bins] the predicted | |
aligned error probabilities over bins for each residue pair. | |
predicted_aligned_error: [num_res, num_res] the expected aligned distance | |
error for each pair of residues. | |
max_predicted_aligned_error: The maximum predicted error possible. | |
""" | |
aligned_confidence_probs = scipy.special.softmax( | |
logits, | |
axis=-1) | |
predicted_aligned_error, max_predicted_aligned_error = ( | |
_calculate_expected_aligned_error( | |
alignment_confidence_breaks=breaks, | |
aligned_distance_error_probs=aligned_confidence_probs)) | |
return { | |
'aligned_confidence_probs': aligned_confidence_probs, | |
'predicted_aligned_error': predicted_aligned_error, | |
'max_predicted_aligned_error': max_predicted_aligned_error, | |
} | |
def predicted_tm_score( | |
logits: np.ndarray, | |
breaks: np.ndarray, | |
residue_weights: Optional[np.ndarray] = None) -> np.ndarray: | |
"""Computes predicted TM alignment score. | |
Args: | |
logits: [num_res, num_res, num_bins] the logits output from | |
PredictedAlignedErrorHead. | |
breaks: [num_bins] the error bins. | |
residue_weights: [num_res] the per residue weights to use for the | |
expectation. | |
Returns: | |
ptm_score: the predicted TM alignment score. | |
""" | |
# residue_weights has to be in [0, 1], but can be floating-point, i.e. the | |
# exp. resolved head's probability. | |
if residue_weights is None: | |
residue_weights = np.ones(logits.shape[0]) | |
bin_centers = _calculate_bin_centers(breaks) | |
num_res = np.sum(residue_weights) | |
# Clip num_res to avoid negative/undefined d0. | |
clipped_num_res = max(num_res, 19) | |
# Compute d_0(num_res) as defined by TM-score, eqn. (5) in | |
# http://zhanglab.ccmb.med.umich.edu/papers/2004_3.pdf | |
# Yang & Skolnick "Scoring function for automated | |
# assessment of protein structure template quality" 2004 | |
d0 = 1.24 * (clipped_num_res - 15) ** (1./3) - 1.8 | |
# Convert logits to probs | |
probs = scipy.special.softmax(logits, axis=-1) | |
# TM-Score term for every bin | |
tm_per_bin = 1. / (1 + np.square(bin_centers) / np.square(d0)) | |
# E_distances tm(distance) | |
predicted_tm_term = np.sum(probs * tm_per_bin, axis=-1) | |
normed_residue_mask = residue_weights / (1e-8 + residue_weights.sum()) | |
per_alignment = np.sum(predicted_tm_term * normed_residue_mask, axis=-1) | |
return np.asarray(per_alignment[(per_alignment * residue_weights).argmax()]) | |