Spaces:
Running
on
T4
Running
on
T4
# Copyright 2021 DeepMind Technologies Limited | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Protein data type.""" | |
import dataclasses | |
import io | |
from typing import Any, Mapping, Optional | |
from alphafold.common import residue_constants | |
from Bio.PDB import PDBParser | |
import numpy as np | |
FeatureDict = Mapping[str, np.ndarray] | |
ModelOutput = Mapping[str, Any] # Is a nested dict. | |
class Protein: | |
"""Protein structure representation.""" | |
# Cartesian coordinates of atoms in angstroms. The atom types correspond to | |
# residue_constants.atom_types, i.e. the first three are N, CA, CB. | |
atom_positions: np.ndarray # [num_res, num_atom_type, 3] | |
# Amino-acid type for each residue represented as an integer between 0 and | |
# 20, where 20 is 'X'. | |
aatype: np.ndarray # [num_res] | |
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom | |
# is present and 0.0 if not. This should be used for loss masking. | |
atom_mask: np.ndarray # [num_res, num_atom_type] | |
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed. | |
residue_index: np.ndarray # [num_res] | |
# B-factors, or temperature factors, of each residue (in sq. angstroms units), | |
# representing the displacement of the residue from its ground truth mean | |
# value. | |
b_factors: np.ndarray # [num_res, num_atom_type] | |
def from_pdb_string(pdb_str: str, chain_id: Optional[str] = None) -> Protein: | |
"""Takes a PDB string and constructs a Protein object. | |
WARNING: All non-standard residue types will be converted into UNK. All | |
non-standard atoms will be ignored. | |
Args: | |
pdb_str: The contents of the pdb file | |
chain_id: If None, then the pdb file must contain a single chain (which | |
will be parsed). If chain_id is specified (e.g. A), then only that chain | |
is parsed. | |
Returns: | |
A new `Protein` parsed from the pdb contents. | |
""" | |
pdb_fh = io.StringIO(pdb_str) | |
parser = PDBParser(QUIET=True) | |
structure = parser.get_structure('none', pdb_fh) | |
models = list(structure.get_models()) | |
if len(models) != 1: | |
raise ValueError( | |
f'Only single model PDBs are supported. Found {len(models)} models.') | |
model = models[0] | |
if chain_id is not None: | |
chain = model[chain_id] | |
else: | |
chains = list(model.get_chains()) | |
if len(chains) != 1: | |
raise ValueError( | |
'Only single chain PDBs are supported when chain_id not specified. ' | |
f'Found {len(chains)} chains.') | |
else: | |
chain = chains[0] | |
atom_positions = [] | |
aatype = [] | |
atom_mask = [] | |
residue_index = [] | |
b_factors = [] | |
for res in chain: | |
if res.id[2] != ' ': | |
raise ValueError( | |
f'PDB contains an insertion code at chain {chain.id} and residue ' | |
f'index {res.id[1]}. These are not supported.') | |
res_shortname = residue_constants.restype_3to1.get(res.resname, 'X') | |
restype_idx = residue_constants.restype_order.get( | |
res_shortname, residue_constants.restype_num) | |
pos = np.zeros((residue_constants.atom_type_num, 3)) | |
mask = np.zeros((residue_constants.atom_type_num,)) | |
res_b_factors = np.zeros((residue_constants.atom_type_num,)) | |
for atom in res: | |
if atom.name not in residue_constants.atom_types: | |
continue | |
pos[residue_constants.atom_order[atom.name]] = atom.coord | |
mask[residue_constants.atom_order[atom.name]] = 1. | |
res_b_factors[residue_constants.atom_order[atom.name]] = atom.bfactor | |
if np.sum(mask) < 0.5: | |
# If no known atom positions are reported for the residue then skip it. | |
continue | |
aatype.append(restype_idx) | |
atom_positions.append(pos) | |
atom_mask.append(mask) | |
residue_index.append(res.id[1]) | |
b_factors.append(res_b_factors) | |
return Protein( | |
atom_positions=np.array(atom_positions), | |
atom_mask=np.array(atom_mask), | |
aatype=np.array(aatype), | |
residue_index=np.array(residue_index), | |
b_factors=np.array(b_factors)) | |
def to_pdb(prot: Protein) -> str: | |
"""Converts a `Protein` instance to a PDB string. | |
Args: | |
prot: The protein to convert to PDB. | |
Returns: | |
PDB string. | |
""" | |
restypes = residue_constants.restypes + ['X'] | |
res_1to3 = lambda r: residue_constants.restype_1to3.get(restypes[r], 'UNK') | |
atom_types = residue_constants.atom_types | |
pdb_lines = [] | |
atom_mask = prot.atom_mask | |
aatype = prot.aatype | |
atom_positions = prot.atom_positions | |
residue_index = prot.residue_index.astype(np.int32) | |
b_factors = prot.b_factors | |
if np.any(aatype > residue_constants.restype_num): | |
raise ValueError('Invalid aatypes.') | |
pdb_lines.append('MODEL 1') | |
atom_index = 1 | |
chain_id = 'A' | |
# Add all atom sites. | |
for i in range(aatype.shape[0]): | |
res_name_3 = res_1to3(aatype[i]) | |
for atom_name, pos, mask, b_factor in zip( | |
atom_types, atom_positions[i], atom_mask[i], b_factors[i]): | |
if mask < 0.5: | |
continue | |
record_type = 'ATOM' | |
name = atom_name if len(atom_name) == 4 else f' {atom_name}' | |
alt_loc = '' | |
insertion_code = '' | |
occupancy = 1.00 | |
element = atom_name[0] # Protein supports only C, N, O, S, this works. | |
charge = '' | |
# PDB is a columnar format, every space matters here! | |
atom_line = (f'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}' | |
f'{res_name_3:>3} {chain_id:>1}' | |
f'{residue_index[i]:>4}{insertion_code:>1} ' | |
f'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}' | |
f'{occupancy:>6.2f}{b_factor:>6.2f} ' | |
f'{element:>2}{charge:>2}') | |
pdb_lines.append(atom_line) | |
atom_index += 1 | |
# Close the chain. | |
chain_end = 'TER' | |
chain_termination_line = ( | |
f'{chain_end:<6}{atom_index:>5} {res_1to3(aatype[-1]):>3} ' | |
f'{chain_id:>1}{residue_index[-1]:>4}') | |
pdb_lines.append(chain_termination_line) | |
pdb_lines.append('ENDMDL') | |
pdb_lines.append('END') | |
pdb_lines.append('') | |
return '\n'.join(pdb_lines) | |
def ideal_atom_mask(prot: Protein) -> np.ndarray: | |
"""Computes an ideal atom mask. | |
`Protein.atom_mask` typically is defined according to the atoms that are | |
reported in the PDB. This function computes a mask according to heavy atoms | |
that should be present in the given sequence of amino acids. | |
Args: | |
prot: `Protein` whose fields are `numpy.ndarray` objects. | |
Returns: | |
An ideal atom mask. | |
""" | |
return residue_constants.STANDARD_ATOM_MASK[prot.aatype] | |
def from_prediction(features: FeatureDict, result: ModelOutput, | |
b_factors: Optional[np.ndarray] = None) -> Protein: | |
"""Assembles a protein from a prediction. | |
Args: | |
features: Dictionary holding model inputs. | |
result: Dictionary holding model outputs. | |
b_factors: (Optional) B-factors to use for the protein. | |
Returns: | |
A protein instance. | |
""" | |
fold_output = result['structure_module'] | |
if b_factors is None: | |
b_factors = np.zeros_like(fold_output['final_atom_mask']) | |
return Protein( | |
aatype=features['aatype'][0], | |
atom_positions=fold_output['final_atom_positions'], | |
atom_mask=fold_output['final_atom_mask'], | |
residue_index=features['residue_index'][0] + 1, | |
b_factors=b_factors) | |