diffdock / utils /geometry.py
gcorso's picture
first commit
4a3f787
raw
history blame
4.02 kB
import math
import torch
def quaternion_to_matrix(quaternions):
"""
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def axis_angle_to_quaternion(axis_angle):
"""
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
Convert rotations given as axis/angle to quaternions.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
half_angles = 0.5 * angles
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
# so sin(x/2)/x is about 1/2 - (x*x)/48
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles] * angles[small_angles]) / 48
)
quaternions = torch.cat(
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
)
return quaternions
def axis_angle_to_matrix(axis_angle):
"""
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
Convert rotations given as axis/angle to rotation matrices.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
def rigid_transform_Kabsch_3D_torch(A, B):
# R = 3x3 rotation matrix, t = 3x1 column vector
# This already takes residue identity into account.
assert A.shape[1] == B.shape[1]
num_rows, num_cols = A.shape
if num_rows != 3:
raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}")
num_rows, num_cols = B.shape
if num_rows != 3:
raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}")
# find mean column wise: 3 x 1
centroid_A = torch.mean(A, axis=1, keepdims=True)
centroid_B = torch.mean(B, axis=1, keepdims=True)
# subtract mean
Am = A - centroid_A
Bm = B - centroid_B
H = Am @ Bm.T
# find rotation
U, S, Vt = torch.linalg.svd(H)
R = Vt.T @ U.T
# special reflection case
if torch.linalg.det(R) < 0:
# print("det(R) < R, reflection detected!, correcting for it ...")
SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device))
R = (Vt.T @ SS) @ U.T
assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 # note I had to change this error bound to be higher
t = -R @ centroid_A + centroid_B
return R, t