Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,691 Bytes
bf5ad3c 3087373 bf5ad3c 4a3a4a3 bf5ad3c 3087373 bf5ad3c 4a3a4a3 bf5ad3c 60d2d8a bf5ad3c 95ba32b bf5ad3c 95ba32b 1b24396 bf5ad3c 73df6bf bf5ad3c 73df6bf bf5ad3c 4a3a4a3 3087373 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import os
import re
import streamlit_analytics
from huggingface_hub import snapshot_download
import streamlit as st
import streamlit.components.v1 as components
import spacy
from spacy import displacy
from spacy.tokens import Span
import pandas as pd
import numpy as np
from utils import add_logo_to_sidebar, add_footer
HF_TOKEN = os.environ.get("HF_TOKEN")
REPO_ID = "simplexico/cuad-spacy-custom-ner"
EXAMPLE_TEXT = """Exhibit 10.16 CONSULTING AGREEMENT
This Consulting Agreement (the "Agreement") is made and entered into as of this 2nd day of January 2020,
by and between Global Technologies, Ltd (hereinafter the "Company"),
a Delaware corporation whose address is 501 1st Ave N., Suite 901, St. Petersburg, FL 33701 and Timothy Cabrera (hereinafter the "Consultant"),
an individual whose address is 11718 SE Federal Hwy., Suite 372, Hobe Sound, FL 33455 (individually, a "Party"; collectively, the "Parties")."""
streamlit_analytics.start_tracking()
## Layout stuff
st.set_page_config(
page_title="Extract Demo",
page_icon="⛏",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'mailto:[email protected]',
'Report a bug': None,
'About': "## This a demo showcasing different Legal AI Actions"
}
)
add_logo_to_sidebar()
st.title('⛏ Extract Demo')
st.write("""
This demo shows how AI can be used to extract information from text.
We've trained an AI model to extract key pieces of information from a contract recital.
""")
@st.cache(allow_output_mutation=True)
def load_model():
snapshot_download(repo_id=REPO_ID, token=HF_TOKEN, local_dir='./')
nlp = spacy.load('model-best')
return nlp
st.markdown('### 🖊 Enter a contract recital')
text = st.text_area('Enter Clause Text', label_visibility='collapsed', value=EXAMPLE_TEXT, height=100)
button = st.button('Extract Data', type='primary', use_container_width=True)
with st.spinner('⚙️ Loading model...'):
nlp = load_model()
def check_span_pair_for_overlap(span1, span2):
""" Checks a pair of spans for any overlapping ranges
Args:
span1: (start, end) tuple
span2: (start, end) tuple
Return:
True if overlap, False otherwise
"""
# remove offset
minimum = min(span1[0], span2[0])
span1 = (span1[0] - minimum, span1[1] - minimum)
span2 = (span2[0] - minimum, span2[1] - minimum)
maximum = max(span1[1], span2[1])
vec1 = np.zeros(maximum)
vec1[span1[0]:span1[1]] = 1
vec2 = np.zeros(maximum)
vec2[span2[0]:span2[1]] = 1
if np.dot(vec1, vec2):
return True
return False
def add_detected_persons_as_parties(doc):
nlp = spacy.load('en_core_web_md')
doc_ = nlp(doc.text)
original_ents = list(doc.ents)
for ent in doc_.ents:
if ent.label_ == 'PERSON':
if not any([check_span_pair_for_overlap((ent.start, ent.end), (ent_.start, ent_.end)) for ent_ in
original_ents]):
print(ent)
# check for overlapping ents
original_ents.append(Span(doc, ent.start, ent.end, label='parties'))
doc.ents = original_ents
return doc
def add_rule_based_entites(doc):
"""Adds rule based entity spans to document
Args:
doc (spacy.tokens.doc.Doc)
"""
patterns = [
('[0-9]+[\s]+[a-zA-Z0-9.\-\,\#]+[\s]*[a-zA-Z0-9.\-\,\#]+[a-zA-Z0-9\s.\-\,\#]*\s[0-9]+', 'address'),
('Consultant|Company|Party|Parties', 'role'),
]
for pattern, label in patterns:
ents = []
for match in re.finditer(pattern, doc.text):
start, end = match.span()
span = doc.char_span(start, end)
if span is not None:
ents.append((span.start, span.end, span.text))
original_ents = list(doc.ents)
for ent in ents:
start, end, address = ent
per_ent = Span(doc, start, end, label=label)
original_ents.append(per_ent)
doc.ents = original_ents
return doc
if button:
col1, col2 = st.columns(2)
with st.spinner('⚙️ Extracting Data...'):
doc = nlp(text)
doc = add_rule_based_entites(doc)
doc = add_detected_persons_as_parties(doc)
with col1:
st.subheader('🎨 Highlighted Text')
colors = {'party': "#85C1E9", "address": "#ff6961", "agreement_date": "#5de36f", "role": "#b05de3"}
options = {"ents": ['party', 'address', 'agreement_date', 'role'], "colors": colors}
label_aliases = {
'parties': 'Party',
'address': 'Address',
'agreement_date': 'Agreement Date',
'role': 'Role'
}
doc.spans["sc"] = [
Span(doc, ent.start, ent.end, label_aliases[ent.label_]) for ent in doc.ents
]
html = displacy.render(doc, style="span", options=options)
components.html(html, height=400)
with col2:
# display table
data = {
'Text': [],
'Label': []
}
st.subheader('📊 Extracted Data')
for span in doc.spans['sc']:
data['Label'].append(span.label_)
data['Text'].append(span.text)
df = pd.DataFrame(data)
hide_dataframe_row_index = """
<style>
.row_heading.level0 {display:none}
.blank {display:none}
</style>
"""
# Inject CSS with Markdown
st.markdown(hide_dataframe_row_index, unsafe_allow_html=True)
st.table(df)
add_footer()
streamlit_analytics.stop_tracking(unsafe_password=os.environ["ANALYTICS_PASSWORD"]) |