File size: 5,346 Bytes
3087373
60d2d8a
 
916cbfe
 
6d70e63
60d2d8a
916cbfe
 
 
 
3087373
95ba32b
3087373
4a3a4a3
95ba32b
916cbfe
 
 
 
 
 
3087373
 
95ba32b
 
 
 
 
 
 
 
 
 
 
 
4a3a4a3
 
95ba32b
916cbfe
60d2d8a
 
916cbfe
 
6d70e63
916cbfe
 
60d2d8a
aec7e41
60d2d8a
916cbfe
 
 
 
 
 
 
 
60d2d8a
916cbfe
 
 
 
 
 
60d2d8a
6d70e63
916cbfe
 
 
 
60d2d8a
6d70e63
916cbfe
60d2d8a
 
 
6d70e63
60d2d8a
6d70e63
 
 
 
 
916cbfe
 
 
 
 
 
 
 
 
 
 
 
4a3a4a3
6d70e63
 
60d2d8a
50b327c
 
 
 
6d70e63
50b327c
6d70e63
50b327c
6d70e63
50b327c
6d70e63
60d2d8a
50b327c
 
 
 
6d70e63
50b327c
 
6d70e63
50b327c
6d70e63
50b327c
6d70e63
50b327c
 
 
60d2d8a
 
aec7e41
6d70e63
60d2d8a
50b327c
 
 
 
 
 
60d2d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50b327c
 
 
6d70e63
50b327c
6d70e63
50b327c
 
 
6d70e63
50b327c
6d70e63
60d2d8a
 
 
 
 
6d70e63
 
3087373
 
60d2d8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
from io import StringIO

import joblib

from copy import deepcopy
from pypdf import PdfReader
import pandas as pd
import plotly.express as px

from huggingface_hub import hf_hub_download, snapshot_download

import streamlit as st
import streamlit_analytics
from utils import add_logo_to_sidebar, add_footer, add_email_signup_form

HF_TOKEN = os.environ.get("HF_TOKEN")
MODEL_REPO_ID = "simplexico/cuad-sklearn-contract-clustering"
DATA_REPO_ID = "simplexico/cuad-top-ten"
MODEL_FILENAME = "cuad_tfidf_umap_kmeans.pkl"
DATA_FILENAME = "cuad_top_ten_popular_contract_types.json"

streamlit_analytics.start_tracking()

st.set_page_config(
    page_title="Organise Demo",
    page_icon="πŸ—‚",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'mailto:[email protected]',
        'Report a bug': None,
        'About': "## This a demo showcasing different Legal AI Actions"
    }
)

add_logo_to_sidebar()

st.title('πŸ—‚ Organise Demo')
st.write("""
This demo shows how AI can be used to organise a collection of texts.
We've trained a model to group documents into similar types.
The plot below shows a sample set of contracts that have been automatically grouped together.
Each point in the plot represents how the model interprets a contract, the closer together a pair of points are, the more similar they appear to the model.
Similar documents are grouped by color.
\n**TIP:** Hover over each point to see the filename of the contract. Groups can be added or removed by clicking on the symbol in the plot legend.
""")

st.info("**πŸ‘ˆ Upload your own documents on the left (as .txt or .pdf files)**")


@st.cache(allow_output_mutation=True)
def load_model():
    model = joblib.load(
        hf_hub_download(repo_id=MODEL_REPO_ID, filename=MODEL_FILENAME, token=HF_TOKEN)
    )
    return model


@st.cache(allow_output_mutation=True)
def load_dataset():
    snapshot_download(repo_id=DATA_REPO_ID, token=HF_TOKEN, local_dir='./', repo_type='dataset')
    df = pd.read_json(DATA_FILENAME)
    return df


def get_transform_and_predictions(model, X):
    y = model.predict(X)
    X_transform = model[:2].transform(X)
    return X_transform, y


def generate_plot(X, y, filenames):
    fig = px.scatter_3d(
        x=X[:, 0],
        y=X[:, 1],
        z=X[:, 2],
        color=[str(y_i) for y_i in y], hover_name=filenames)

    fig.update_traces(
        marker_size=8,
        marker_line=dict(width=2),
        selector=dict(mode='markers')
    )

    fig.update_layout(
        legend=dict(
            title='grouping',
            yanchor="top",
            y=0.99,
            xanchor="left",
            x=0.01
        ),
        width=1100,
        height=900
    )

    return fig


@st.cache(allow_output_mutation=True)
def prepare_figure(model, df):
    X = [text[:500] for text in df['text'].to_list()]
    filenames = df['filename'].to_list()

    X_transform, y = get_transform_and_predictions(model, X)

    fig = generate_plot(X_transform, y, filenames)

    return fig


@st.cache()
def prepare_page():
    model = load_model()
    df = load_dataset()

    X = [text[:500] for text in df['text'].to_list()]
    filenames = df['filename'].to_list()

    X_transform, y = get_transform_and_predictions(model, X)

    fig = prepare_figure(model, df)

    return fig, model


uploaded_files = st.sidebar.file_uploader("Upload your documents", accept_multiple_files=True,
                                          type=['pdf', 'txt'],
                                          help="Upload a set of .pdf or .txt files")

# button = st.sidebar.button('Organise Contracts', type='primary', use_container_width=True)

with st.spinner('βš™οΈ Loading model...'):
    fig, cuad_tfidf_umap_kmeans = prepare_page()
    figure = st.plotly_chart(fig, use_container_width=True)


if uploaded_files:
    figure.empty()
    filenames = []
    X_train = []
    if len(uploaded_files) < 5:
        st.error('### πŸ’” Please upload more than 4 files.')
    else:
        with st.spinner('βš™οΈ Training model...'):
            for uploaded_file in uploaded_files:
                print(uploaded_file.name)
                if '.pdf' in uploaded_file.name.lower():
                    reader = PdfReader(uploaded_file)
                    page_texts = [page.extract_text() for page in reader.pages]
                    text = "\n".join(page_texts)

                if '.txt' in uploaded_file.name.lower():
                    stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
                    text = stringio.read()

                X_train.append(text[:500])
                filenames.append(uploaded_file.name)

            if len(uploaded_files) < 10:
                n_clusters = 3
            else:
                n_clusters = 8

            tfidf_umap_kmeans = deepcopy(cuad_tfidf_umap_kmeans)
            tfidf_umap_kmeans.set_params(kmeans__n_clusters=n_clusters)
            tfidf_umap_kmeans.fit(X_train)

            X_transform, y = get_transform_and_predictions(cuad_tfidf_umap_kmeans, X_train)

        fig = generate_plot(X_transform, y, filenames)

        st.markdown("## πŸ—‚ Your Organised Documents")

        st.plotly_chart(fig, use_container_width=True)


add_footer()

streamlit_analytics.stop_tracking(unsafe_password=os.environ["ANALYTICS_PASSWORD"])