legal-ai-actions / pages /3_⛏_Extract_Demo.py
Uwais's picture
updating organise demo to take pdfs and some design changes
60d2d8a
raw
history blame
5.69 kB
import os
import re
import streamlit_analytics
from huggingface_hub import snapshot_download
import streamlit as st
import streamlit.components.v1 as components
import spacy
from spacy import displacy
from spacy.tokens import Span
import pandas as pd
import numpy as np
from utils import add_logo_to_sidebar, add_footer
HF_TOKEN = os.environ.get("HF_TOKEN")
REPO_ID = "simplexico/cuad-spacy-custom-ner"
EXAMPLE_TEXT = """Exhibit 10.16 CONSULTING AGREEMENT
This Consulting Agreement (the "Agreement") is made and entered into as of this 2nd day of January 2020,
by and between Global Technologies, Ltd (hereinafter the "Company"),
a Delaware corporation whose address is 501 1st Ave N., Suite 901, St. Petersburg, FL 33701 and Timothy Cabrera (hereinafter the "Consultant"),
an individual whose address is 11718 SE Federal Hwy., Suite 372, Hobe Sound, FL 33455 (individually, a "Party"; collectively, the "Parties")."""
streamlit_analytics.start_tracking()
## Layout stuff
st.set_page_config(
page_title="Extract Demo",
page_icon="⛏",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'mailto:[email protected]',
'Report a bug': None,
'About': "## This a demo showcasing different Legal AI Actions"
}
)
add_logo_to_sidebar()
st.title('⛏ Extract Demo')
st.write("""
This demo shows how AI can be used to extract information from text.
We've trained an AI model to extract key pieces of information from a contract recital.
""")
@st.cache(allow_output_mutation=True)
def load_model():
snapshot_download(repo_id=REPO_ID, token=HF_TOKEN, local_dir='./')
nlp = spacy.load('model-best')
return nlp
st.markdown('### 🖊 Enter a contract recital')
text = st.text_area('Enter Clause Text', label_visibility='collapsed', value=EXAMPLE_TEXT, height=100)
button = st.button('Extract Data', type='primary', use_container_width=True)
with st.spinner('⚙️ Loading model...'):
nlp = load_model()
def check_span_pair_for_overlap(span1, span2):
""" Checks a pair of spans for any overlapping ranges
Args:
span1: (start, end) tuple
span2: (start, end) tuple
Return:
True if overlap, False otherwise
"""
# remove offset
minimum = min(span1[0], span2[0])
span1 = (span1[0] - minimum, span1[1] - minimum)
span2 = (span2[0] - minimum, span2[1] - minimum)
maximum = max(span1[1], span2[1])
vec1 = np.zeros(maximum)
vec1[span1[0]:span1[1]] = 1
vec2 = np.zeros(maximum)
vec2[span2[0]:span2[1]] = 1
if np.dot(vec1, vec2):
return True
return False
def add_detected_persons_as_parties(doc):
nlp = spacy.load('en_core_web_md')
doc_ = nlp(doc.text)
original_ents = list(doc.ents)
for ent in doc_.ents:
if ent.label_ == 'PERSON':
if not any([check_span_pair_for_overlap((ent.start, ent.end), (ent_.start, ent_.end)) for ent_ in
original_ents]):
print(ent)
# check for overlapping ents
original_ents.append(Span(doc, ent.start, ent.end, label='parties'))
doc.ents = original_ents
return doc
def add_rule_based_entites(doc):
"""Adds rule based entity spans to document
Args:
doc (spacy.tokens.doc.Doc)
"""
patterns = [
('[0-9]+[\s]+[a-zA-Z0-9.\-\,\#]+[\s]*[a-zA-Z0-9.\-\,\#]+[a-zA-Z0-9\s.\-\,\#]*\s[0-9]+', 'address'),
('Consultant|Company|Party|Parties', 'role'),
]
for pattern, label in patterns:
ents = []
for match in re.finditer(pattern, doc.text):
start, end = match.span()
span = doc.char_span(start, end)
if span is not None:
ents.append((span.start, span.end, span.text))
original_ents = list(doc.ents)
for ent in ents:
start, end, address = ent
per_ent = Span(doc, start, end, label=label)
original_ents.append(per_ent)
doc.ents = original_ents
return doc
if button:
col1, col2 = st.columns(2)
with st.spinner('⚙️ Extracting Data...'):
doc = nlp(text)
doc = add_rule_based_entites(doc)
doc = add_detected_persons_as_parties(doc)
with col1:
st.subheader('🎨 Highlighted Text')
colors = {'party': "#85C1E9", "address": "#ff6961", "agreement_date": "#5de36f", "role": "#b05de3"}
options = {"ents": ['party', 'address', 'agreement_date', 'role'], "colors": colors}
label_aliases = {
'parties': 'Party',
'address': 'Address',
'agreement_date': 'Agreement Date',
'role': 'Role'
}
doc.spans["sc"] = [
Span(doc, ent.start, ent.end, label_aliases[ent.label_]) for ent in doc.ents
]
html = displacy.render(doc, style="span", options=options)
components.html(html, height=400)
with col2:
# display table
data = {
'Text': [],
'Label': []
}
st.subheader('📊 Extracted Data')
for span in doc.spans['sc']:
data['Label'].append(span.label_)
data['Text'].append(span.text)
df = pd.DataFrame(data)
hide_dataframe_row_index = """
<style>
.row_heading.level0 {display:none}
.blank {display:none}
</style>
"""
# Inject CSS with Markdown
st.markdown(hide_dataframe_row_index, unsafe_allow_html=True)
st.table(df)
add_footer()
streamlit_analytics.stop_tracking(unsafe_password=os.environ["ANALYTICS_PASSWORD"])