legal-ai-actions / pages /1_๐Ÿท_Label_Clause_Demo.py
Uwais's picture
adding analytics
3087373
raw
history blame
3.42 kB
import os
import joblib
import plotly.graph_objects as go
import streamlit_analytics
from huggingface_hub import hf_hub_download
import streamlit as st
import streamlit.components.v1 as components
from lime.lime_text import LimeTextExplainer
from utils import add_logo_to_sidebar, add_footer
HF_TOKEN = os.environ.get("HF_TOKEN")
REPO_ID = "simplexico/cuad-sklearn-clause-classifier"
FILENAME = "CUAD-clause-classifier.pkl"
EXAMPLE_TEXT = """This Agreement and any dispute or claim arising out of or in connection with it
or its subject matter or formation (including non-contractual disputes or claims) shall be
governed by and construed in accordance with the law of England."""
streamlit_analytics.start_tracking()
## Layout stuff
st.set_page_config(
page_title="Label Clause Demo",
page_icon="๐Ÿท",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'mailto:[email protected]',
'Report a bug': None,
'About': "## This a demo showcasing different Legal AI Actions"
}
)
add_logo_to_sidebar()
st.title('๐Ÿท Label Clause Demo')
st.write("""
This demo shows how AI can be used to label text.
We've trained an AI model to label a clause by its clause type.
""")
st.write("**๐Ÿ‘ˆ Enter a clause on the left** and hit the button **Label Clause** to see the demo in action")
@st.cache(allow_output_mutation=True)
def load_model():
model = joblib.load(
hf_hub_download(repo_id=REPO_ID, filename=FILENAME, token=HF_TOKEN)
)
return model
@st.cache(allow_output_mutation=True)
def get_prediction_prob(text):
y_pred = model.predict([text])[0]
y_probs = model.predict_proba([text])[0]
return y_pred, y_probs
text = st.sidebar.text_area(label='Enter Clause Text', value=EXAMPLE_TEXT, height=250)
button = st.sidebar.button('**Label Clause**', type='primary', use_container_width=True)
with st.spinner('โš™๏ธ Loading model...'):
model = load_model()
classes = [s.upper() for s in model.classes_]
if button:
with st.spinner('โš™๏ธ Processing Clause...'):
y_pred, y_probs = get_prediction_prob(text)
explainer = LimeTextExplainer(class_names=[cls[:9] + 'โ€ฆ' for cls in model.classes_])
exp = explainer.explain_instance(text,
model.predict_proba,
num_features=10,
top_labels=1)
col1, col2 = st.columns(2)
with col1:
st.markdown('### ๐Ÿค– Prediction Results')
st.write(
f"The model predicts that this is a **{y_pred}** clause with **{y_probs.max() * 100:.2f}%** confidence.")
fig = go.Figure(go.Bar(
x=y_probs * 100,
y=model.classes_,
orientation='h'))
fig.update_layout(
title="Model Confidence",
xaxis_title="Confidence (%)",
yaxis_title="Clause Type",
)
st.plotly_chart(fig, use_container_width=True)
with col2:
st.markdown('### ๐Ÿ”ฎ Prediction Explainability')
st.write(
'We can perform an analysis to work out what terms in the clause were most important in deciding the predicted clause type:')
components.html(exp.as_html(predict_proba=False), height=600)
add_footer()
streamlit_analytics.stop_tracking(unsafe_password=os.environ["ANALYTICS_PASSWORD"])