Spaces:
Running
on
Zero
Running
on
Zero
sindhuhegde
commited on
Commit
•
43bd4b0
1
Parent(s):
e41c892
Update app
Browse files
app.py
CHANGED
@@ -34,6 +34,7 @@ CHECKPOINT_PATH = "model_rgb.pth"
|
|
34 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
use_cuda = torch.cuda.is_available()
|
36 |
n_negative_samples = 100
|
|
|
37 |
|
38 |
def preprocess_video(path, result_folder, apply_preprocess, padding=20):
|
39 |
|
@@ -225,7 +226,9 @@ def load_checkpoint(path, model):
|
|
225 |
for k, v in s.items():
|
226 |
new_s[k.replace('module.', '')] = v
|
227 |
model.load_state_dict(new_s)
|
228 |
-
|
|
|
|
|
229 |
|
230 |
print("Loaded checkpoint from: {}".format(path))
|
231 |
|
@@ -721,10 +724,6 @@ def process_video(video_path, num_avg_frames, apply_preprocess):
|
|
721 |
|
722 |
# Convert frames to tensor
|
723 |
rgb_frames = np.transpose(rgb_frames, (4, 0, 1, 2, 3))
|
724 |
-
print("Transposed array: ", rgb_frames.shape)
|
725 |
-
a = np.array([2,2])
|
726 |
-
b = torch.tensor(a)
|
727 |
-
print("checking torch: ", b.shape)
|
728 |
rgb_frames = torch.FloatTensor(rgb_frames).unsqueeze(0)
|
729 |
B = rgb_frames.size(0)
|
730 |
print("Successfully converted the frames to tensor")
|
|
|
34 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
use_cuda = torch.cuda.is_available()
|
36 |
n_negative_samples = 100
|
37 |
+
print("Using CUDA: ", use_cuda, device)
|
38 |
|
39 |
def preprocess_video(path, result_folder, apply_preprocess, padding=20):
|
40 |
|
|
|
226 |
for k, v in s.items():
|
227 |
new_s[k.replace('module.', '')] = v
|
228 |
model.load_state_dict(new_s)
|
229 |
+
|
230 |
+
if use_cuda:
|
231 |
+
model.cuda()
|
232 |
|
233 |
print("Loaded checkpoint from: {}".format(path))
|
234 |
|
|
|
724 |
|
725 |
# Convert frames to tensor
|
726 |
rgb_frames = np.transpose(rgb_frames, (4, 0, 1, 2, 3))
|
|
|
|
|
|
|
|
|
727 |
rgb_frames = torch.FloatTensor(rgb_frames).unsqueeze(0)
|
728 |
B = rgb_frames.size(0)
|
729 |
print("Successfully converted the frames to tensor")
|