Spaces:
Running
on
Zero
Running
on
Zero
sindhuhegde
commited on
Commit
•
7d916cf
1
Parent(s):
c10597c
Update app
Browse files
app.py
CHANGED
@@ -64,10 +64,11 @@ def preprocess_video(path, result_folder, padding=20):
|
|
64 |
for k in range(len(vr)):
|
65 |
all_frames.append(vr[k].asnumpy())
|
66 |
all_frames = np.asarray(all_frames)
|
|
|
67 |
|
68 |
# Load YOLOv5 model (pre-trained on COCO dataset)
|
69 |
yolo_model = YOLO("yolov9c.pt")
|
70 |
-
|
71 |
|
72 |
if frame_count < 25:
|
73 |
msg = "Not enough frames to process! Please give a longer video as input"
|
@@ -76,7 +77,7 @@ def preprocess_video(path, result_folder, padding=20):
|
|
76 |
person_videos = {}
|
77 |
person_tracks = {}
|
78 |
|
79 |
-
for frame_idx in range(frame_count):
|
80 |
|
81 |
frame = all_frames[frame_idx]
|
82 |
|
@@ -124,6 +125,8 @@ def preprocess_video(path, result_folder, padding=20):
|
|
124 |
msg = "Oops! Could not load the audio file. Please check the input video and try again."
|
125 |
return None, None, None, msg
|
126 |
|
|
|
|
|
127 |
# For the person detected, crop the frame based on the bounding box
|
128 |
if len(person_videos[0]) > frame_count-10:
|
129 |
crop_filename = os.path.join(result_folder, "preprocessed_video.avi")
|
|
|
64 |
for k in range(len(vr)):
|
65 |
all_frames.append(vr[k].asnumpy())
|
66 |
all_frames = np.asarray(all_frames)
|
67 |
+
print("Extracted the frames for pre-processing")
|
68 |
|
69 |
# Load YOLOv5 model (pre-trained on COCO dataset)
|
70 |
yolo_model = YOLO("yolov9c.pt")
|
71 |
+
print("Loaded the YOLO model")
|
72 |
|
73 |
if frame_count < 25:
|
74 |
msg = "Not enough frames to process! Please give a longer video as input"
|
|
|
77 |
person_videos = {}
|
78 |
person_tracks = {}
|
79 |
|
80 |
+
for frame_idx in tqdm(range(frame_count)):
|
81 |
|
82 |
frame = all_frames[frame_idx]
|
83 |
|
|
|
125 |
msg = "Oops! Could not load the audio file. Please check the input video and try again."
|
126 |
return None, None, None, msg
|
127 |
|
128 |
+
print("Extracted the audio from the video")
|
129 |
+
|
130 |
# For the person detected, crop the frame based on the bounding box
|
131 |
if len(person_videos[0]) > frame_count-10:
|
132 |
crop_filename = os.path.join(result_folder, "preprocessed_video.avi")
|