Spaces:
Running
on
Zero
Running
on
Zero
sindhuhegde
commited on
Commit
•
aa5ee46
1
Parent(s):
4b6d86c
Add sync-offset-prediction app
Browse files- app.py +899 -0
- requirements.txt +19 -0
- samples/sync_sample_1.mp4 +0 -0
- samples/sync_sample_2.mp4 +0 -0
- sync_models/gestsync_models.py +169 -0
- sync_models/modules.py +196 -0
- utils/audio_utils.py +105 -0
- utils/inference_utils.py +22 -0
app.py
ADDED
@@ -0,0 +1,899 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import argparse
|
3 |
+
import os, subprocess
|
4 |
+
from shutil import rmtree
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
import librosa
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from utils.audio_utils import *
|
12 |
+
from utils.inference_utils import *
|
13 |
+
from sync_models.gestsync_models import *
|
14 |
+
|
15 |
+
from tqdm import tqdm
|
16 |
+
from scipy.io.wavfile import write
|
17 |
+
import mediapipe as mp
|
18 |
+
from protobuf_to_dict import protobuf_to_dict
|
19 |
+
mp_holistic = mp.solutions.holistic
|
20 |
+
from ultralytics import YOLO
|
21 |
+
from decord import VideoReader, cpu
|
22 |
+
|
23 |
+
import warnings
|
24 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
25 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
26 |
+
|
27 |
+
# Set the path to checkpoint file
|
28 |
+
CHECKPOINT_PATH = "checkpoints/model_rgb.pth" # Update this path
|
29 |
+
|
30 |
+
# Initialize global variables
|
31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
use_cuda = torch.cuda.is_available()
|
33 |
+
n_negative_samples = 100
|
34 |
+
|
35 |
+
def preprocess_video(path, result_folder, padding=20):
|
36 |
+
|
37 |
+
'''
|
38 |
+
This function preprocesses the input video to extract the audio and crop the frames using YOLO model
|
39 |
+
|
40 |
+
Args:
|
41 |
+
- path (string) : Path of the input video file
|
42 |
+
- result_folder (string) : Path of the folder to save the extracted audio and cropped video
|
43 |
+
- padding (int) : Padding to add to the bounding box
|
44 |
+
Returns:
|
45 |
+
- wav_file (string) : Path of the extracted audio file
|
46 |
+
- fps (int) : FPS of the input video
|
47 |
+
- video_output (string) : Path of the cropped video file
|
48 |
+
- msg (string) : Message to be returned
|
49 |
+
'''
|
50 |
+
|
51 |
+
# Load all video frames
|
52 |
+
try:
|
53 |
+
vr = VideoReader(path, ctx=cpu(0))
|
54 |
+
fps = vr.get_avg_fps()
|
55 |
+
frame_count = len(vr)
|
56 |
+
except:
|
57 |
+
msg = "Oops! Could not load the video. Please check the input video and try again."
|
58 |
+
return None, None, None, msg
|
59 |
+
|
60 |
+
all_frames = []
|
61 |
+
for k in range(len(vr)):
|
62 |
+
all_frames.append(vr[k].asnumpy())
|
63 |
+
all_frames = np.asarray(all_frames)
|
64 |
+
|
65 |
+
# Load YOLOv5 model (pre-trained on COCO dataset)
|
66 |
+
yolo_model = YOLO("yolov9c.pt")
|
67 |
+
|
68 |
+
|
69 |
+
if frame_count < 25:
|
70 |
+
msg = "Not enough frames to process! Please give a longer video as input"
|
71 |
+
return None, None, None, msg
|
72 |
+
|
73 |
+
person_videos = {}
|
74 |
+
person_tracks = {}
|
75 |
+
|
76 |
+
for frame_idx in range(frame_count):
|
77 |
+
|
78 |
+
frame = all_frames[frame_idx]
|
79 |
+
|
80 |
+
# Perform person detection
|
81 |
+
results = yolo_model(frame, verbose=False)
|
82 |
+
detections = results[0].boxes
|
83 |
+
|
84 |
+
for i, det in enumerate(detections):
|
85 |
+
x1, y1, x2, y2 = det.xyxy[0]
|
86 |
+
cls = det.cls[0]
|
87 |
+
if int(cls) == 0: # Class 0 is 'person' in COCO dataset
|
88 |
+
|
89 |
+
x1 = max(0, int(x1) - padding)
|
90 |
+
y1 = max(0, int(y1) - padding)
|
91 |
+
x2 = min(frame.shape[1], int(x2) + padding)
|
92 |
+
y2 = min(frame.shape[0], int(y2) + padding)
|
93 |
+
|
94 |
+
if i not in person_videos:
|
95 |
+
person_videos[i] = []
|
96 |
+
person_tracks[i] = []
|
97 |
+
|
98 |
+
person_videos[i].append(frame)
|
99 |
+
person_tracks[i].append([x1,y1,x2,y2])
|
100 |
+
|
101 |
+
|
102 |
+
num_persons = 0
|
103 |
+
for i in person_videos.keys():
|
104 |
+
if len(person_videos[i]) >= frame_count//2:
|
105 |
+
num_persons+=1
|
106 |
+
|
107 |
+
if num_persons==0:
|
108 |
+
msg = "No person detected in the video! Please give a video with one person as input"
|
109 |
+
return None, None, None, msg
|
110 |
+
if num_persons>1:
|
111 |
+
msg = "More than one person detected in the video! Please give a video with only one person as input"
|
112 |
+
return None, None, None, msg
|
113 |
+
|
114 |
+
# Extract the audio from the input video file using ffmpeg
|
115 |
+
wav_file = os.path.join(result_folder, "audio.wav")
|
116 |
+
|
117 |
+
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -async 1 -ac 1 -vn \
|
118 |
+
-acodec pcm_s16le -ar 16000 %s -y' % (path, wav_file), shell=True)
|
119 |
+
|
120 |
+
if status != 0:
|
121 |
+
msg = "Oops! Could not load the audio file. Please check the input video and try again."
|
122 |
+
return None, None, None, msg
|
123 |
+
|
124 |
+
# For the person detected, crop the frame based on the bounding box
|
125 |
+
if len(person_videos[0]) > frame_count-10:
|
126 |
+
crop_filename = os.path.join(result_folder, "preprocessed_video.avi")
|
127 |
+
fourcc = cv2.VideoWriter_fourcc(*'DIVX')
|
128 |
+
|
129 |
+
# Get bounding box coordinates based on person_tracks[i]
|
130 |
+
max_x1 = min([track[0] for track in person_tracks[0]])
|
131 |
+
max_y1 = min([track[1] for track in person_tracks[0]])
|
132 |
+
max_x2 = max([track[2] for track in person_tracks[0]])
|
133 |
+
max_y2 = max([track[3] for track in person_tracks[0]])
|
134 |
+
|
135 |
+
max_width = max_x2 - max_x1
|
136 |
+
max_height = max_y2 - max_y1
|
137 |
+
|
138 |
+
out = cv2.VideoWriter(crop_filename, fourcc, fps, (max_width, max_height))
|
139 |
+
for frame in person_videos[0]:
|
140 |
+
crop = frame[max_y1:max_y2, max_x1:max_x2]
|
141 |
+
crop = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)
|
142 |
+
out.write(crop)
|
143 |
+
out.release()
|
144 |
+
|
145 |
+
no_sound_video = crop_filename.split('.')[0] + '_nosound.mp4'
|
146 |
+
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -c copy -an -strict -2 %s' % (crop_filename, no_sound_video), shell=True)
|
147 |
+
if status != 0:
|
148 |
+
msg = "Oops! Could not preprocess the video. Please check the input video and try again."
|
149 |
+
return None, None, None, msg
|
150 |
+
|
151 |
+
video_output = crop_filename.split('.')[0] + '.mp4'
|
152 |
+
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -i %s -strict -2 -q:v 1 %s' %
|
153 |
+
(wav_file , no_sound_video, video_output), shell=True)
|
154 |
+
if status != 0:
|
155 |
+
msg = "Oops! Could not preprocess the video. Please check the input video and try again."
|
156 |
+
return None, None, None, msg
|
157 |
+
|
158 |
+
os.remove(crop_filename)
|
159 |
+
os.remove(no_sound_video)
|
160 |
+
|
161 |
+
print("Successfully saved the pre-processed video: ", video_output)
|
162 |
+
else:
|
163 |
+
msg = "Could not track the person in the full video! Please give a single-speaker video as input"
|
164 |
+
return None, None, None, msg
|
165 |
+
|
166 |
+
return wav_file, fps, video_output, "success"
|
167 |
+
|
168 |
+
def resample_video(video_file, video_fname, result_folder):
|
169 |
+
|
170 |
+
'''
|
171 |
+
This function resamples the video to 25 fps
|
172 |
+
|
173 |
+
Args:
|
174 |
+
- video_file (string) : Path of the input video file
|
175 |
+
- video_fname (string) : Name of the input video file
|
176 |
+
- result_folder (string) : Path of the folder to save the resampled video
|
177 |
+
Returns:
|
178 |
+
- video_file_25fps (string) : Path of the resampled video file
|
179 |
+
'''
|
180 |
+
video_file_25fps = os.path.join(result_folder, '{}.mp4'.format(video_fname))
|
181 |
+
|
182 |
+
# Resample the video to 25 fps
|
183 |
+
command = ("ffmpeg -hide_banner -loglevel panic -y -i {} -q:v 1 -filter:v fps=25 {}".format(video_file, video_file_25fps))
|
184 |
+
from subprocess import call
|
185 |
+
cmd = command.split(' ')
|
186 |
+
print('Resampled the video to 25 fps: {}'.format(video_file_25fps))
|
187 |
+
call(cmd)
|
188 |
+
|
189 |
+
return video_file_25fps
|
190 |
+
|
191 |
+
def load_checkpoint(path, model):
|
192 |
+
'''
|
193 |
+
This function loads the trained model from the checkpoint
|
194 |
+
|
195 |
+
Args:
|
196 |
+
- path (string) : Path of the checkpoint file
|
197 |
+
- model (object) : Model object
|
198 |
+
Returns:
|
199 |
+
- model (object) : Model object with the weights loaded from the checkpoint
|
200 |
+
'''
|
201 |
+
|
202 |
+
# Load the checkpoint
|
203 |
+
if use_cuda:
|
204 |
+
checkpoint = torch.load(path)
|
205 |
+
else:
|
206 |
+
checkpoint = torch.load(path, map_location="cpu")
|
207 |
+
|
208 |
+
s = checkpoint["state_dict"]
|
209 |
+
new_s = {}
|
210 |
+
|
211 |
+
for k, v in s.items():
|
212 |
+
new_s[k.replace('module.', '')] = v
|
213 |
+
model.load_state_dict(new_s)
|
214 |
+
model.cuda()
|
215 |
+
|
216 |
+
print("Loaded checkpoint from: {}".format(path))
|
217 |
+
|
218 |
+
return model.eval()
|
219 |
+
|
220 |
+
|
221 |
+
def load_video_frames(video_file):
|
222 |
+
'''
|
223 |
+
This function extracts the frames from the video
|
224 |
+
|
225 |
+
Args:
|
226 |
+
- video_file (string) : Path of the video file
|
227 |
+
Returns:
|
228 |
+
- frames (list) : List of frames extracted from the video
|
229 |
+
- msg (string) : Message to be returned
|
230 |
+
'''
|
231 |
+
|
232 |
+
# Read the video
|
233 |
+
try:
|
234 |
+
vr = VideoReader(video_file, ctx=cpu(0))
|
235 |
+
except:
|
236 |
+
msg = "Oops! Could not load the input video file"
|
237 |
+
return None, msg
|
238 |
+
|
239 |
+
|
240 |
+
# Extract the frames
|
241 |
+
frames = []
|
242 |
+
for k in range(len(vr)):
|
243 |
+
frames.append(vr[k].asnumpy())
|
244 |
+
|
245 |
+
frames = np.asarray(frames)
|
246 |
+
|
247 |
+
return frames, "success"
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
def get_keypoints(frames):
|
252 |
+
|
253 |
+
'''
|
254 |
+
This function extracts the keypoints from the frames using MediaPipe Holistic pipeline
|
255 |
+
|
256 |
+
Args:
|
257 |
+
- frames (list) : List of frames extracted from the video
|
258 |
+
Returns:
|
259 |
+
- kp_dict (dict) : Dictionary containing the keypoints and the resolution of the frames
|
260 |
+
- msg (string) : Message to be returned
|
261 |
+
'''
|
262 |
+
|
263 |
+
try:
|
264 |
+
holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
265 |
+
|
266 |
+
resolution = frames[0].shape
|
267 |
+
all_frame_kps = []
|
268 |
+
|
269 |
+
for frame in frames:
|
270 |
+
|
271 |
+
results = holistic.process(frame)
|
272 |
+
|
273 |
+
pose, left_hand, right_hand, face = None, None, None, None
|
274 |
+
if results.pose_landmarks is not None:
|
275 |
+
pose = protobuf_to_dict(results.pose_landmarks)['landmark']
|
276 |
+
if results.left_hand_landmarks is not None:
|
277 |
+
left_hand = protobuf_to_dict(results.left_hand_landmarks)['landmark']
|
278 |
+
if results.right_hand_landmarks is not None:
|
279 |
+
right_hand = protobuf_to_dict(results.right_hand_landmarks)['landmark']
|
280 |
+
if results.face_landmarks is not None:
|
281 |
+
face = protobuf_to_dict(results.face_landmarks)['landmark']
|
282 |
+
|
283 |
+
frame_dict = {"pose":pose, "left_hand":left_hand, "right_hand":right_hand, "face":face}
|
284 |
+
|
285 |
+
all_frame_kps.append(frame_dict)
|
286 |
+
|
287 |
+
kp_dict = {"kps":all_frame_kps, "resolution":resolution}
|
288 |
+
except Exception as e:
|
289 |
+
print("Error: ", e)
|
290 |
+
return None, "Error: Could not extract keypoints from the frames"
|
291 |
+
|
292 |
+
return kp_dict, "success"
|
293 |
+
|
294 |
+
|
295 |
+
def check_visible_gestures(kp_dict):
|
296 |
+
|
297 |
+
'''
|
298 |
+
This function checks if the gestures in the video are visible
|
299 |
+
|
300 |
+
Args:
|
301 |
+
- kp_dict (dict) : Dictionary containing the keypoints and the resolution of the frames
|
302 |
+
Returns:
|
303 |
+
- msg (string) : Message to be returned
|
304 |
+
'''
|
305 |
+
|
306 |
+
keypoints = kp_dict['kps']
|
307 |
+
keypoints = np.array(keypoints)
|
308 |
+
|
309 |
+
if len(keypoints)<25:
|
310 |
+
msg = "Not enough keypoints to process! Please give a longer video as input"
|
311 |
+
return msg
|
312 |
+
|
313 |
+
pose_count, hand_count = 0, 0
|
314 |
+
for frame_kp_dict in keypoints:
|
315 |
+
|
316 |
+
pose = frame_kp_dict["pose"]
|
317 |
+
left_hand = frame_kp_dict["left_hand"]
|
318 |
+
right_hand = frame_kp_dict["right_hand"]
|
319 |
+
|
320 |
+
if pose is None:
|
321 |
+
pose_count += 1
|
322 |
+
|
323 |
+
if left_hand is None and right_hand is None:
|
324 |
+
hand_count += 1
|
325 |
+
|
326 |
+
|
327 |
+
if hand_count/len(keypoints) > 0.7 or pose_count/len(keypoints) > 0.7:
|
328 |
+
msg = "The gestures in the input video are not visible! Please give a video with visible gestures as input."
|
329 |
+
return msg
|
330 |
+
|
331 |
+
print("Successfully verified the input video - Gestures are visible!")
|
332 |
+
|
333 |
+
return "success"
|
334 |
+
|
335 |
+
def load_rgb_masked_frames(input_frames, kp_dict, stride=1, window_frames=25, width=480, height=270):
|
336 |
+
|
337 |
+
'''
|
338 |
+
This function masks the faces using the keypoints extracted from the frames
|
339 |
+
|
340 |
+
Args:
|
341 |
+
- input_frames (list) : List of frames extracted from the video
|
342 |
+
- kp_dict (dict) : Dictionary containing the keypoints and the resolution of the frames
|
343 |
+
- stride (int) : Stride to extract the frames
|
344 |
+
- window_frames (int) : Number of frames in each window that is given as input to the model
|
345 |
+
- width (int) : Width of the frames
|
346 |
+
- height (int) : Height of the frames
|
347 |
+
Returns:
|
348 |
+
- input_frames (array) : Frame window to be given as input to the model
|
349 |
+
- num_frames (int) : Number of frames to extract
|
350 |
+
- orig_masked_frames (array) : Masked frames extracted from the video
|
351 |
+
- msg (string) : Message to be returned
|
352 |
+
'''
|
353 |
+
|
354 |
+
# Face indices to extract the face-coordinates needed for masking
|
355 |
+
face_oval_idx = [10, 21, 54, 58, 67, 93, 103, 109, 127, 132, 136, 148, 149, 150, 152, 162, 172,
|
356 |
+
176, 234, 251, 284, 288, 297, 323, 332, 338, 356, 361, 365, 377, 378, 379, 389, 397, 400, 454]
|
357 |
+
|
358 |
+
|
359 |
+
input_keypoints, resolution = kp_dict['kps'], kp_dict['resolution']
|
360 |
+
|
361 |
+
input_frames_masked = []
|
362 |
+
for i, frame_kp_dict in enumerate(input_keypoints):
|
363 |
+
|
364 |
+
img = input_frames[i]
|
365 |
+
face = frame_kp_dict["face"]
|
366 |
+
|
367 |
+
if face is None:
|
368 |
+
img = cv2.resize(img, (width, height))
|
369 |
+
masked_img = cv2.rectangle(img, (0,0), (width,110), (0,0,0), -1)
|
370 |
+
else:
|
371 |
+
face_kps = []
|
372 |
+
for idx in range(len(face)):
|
373 |
+
if idx in face_oval_idx:
|
374 |
+
x, y = int(face[idx]["x"]*resolution[1]), int(face[idx]["y"]*resolution[0])
|
375 |
+
face_kps.append((x,y))
|
376 |
+
|
377 |
+
face_kps = np.array(face_kps)
|
378 |
+
x1, y1 = min(face_kps[:,0]), min(face_kps[:,1])
|
379 |
+
x2, y2 = max(face_kps[:,0]), max(face_kps[:,1])
|
380 |
+
masked_img = cv2.rectangle(img, (0,0), (resolution[1],y2+15), (0,0,0), -1)
|
381 |
+
|
382 |
+
if masked_img.shape[0] != width or masked_img.shape[1] != height:
|
383 |
+
masked_img = cv2.resize(masked_img, (width, height))
|
384 |
+
|
385 |
+
input_frames_masked.append(masked_img)
|
386 |
+
|
387 |
+
orig_masked_frames = np.array(input_frames_masked)
|
388 |
+
input_frames = np.array(input_frames_masked) / 255.
|
389 |
+
# print("Input images full: ", input_frames.shape) # num_framesx270x480x3
|
390 |
+
|
391 |
+
input_frames = np.array([input_frames[i:i+window_frames, :, :] for i in range(0,input_frames.shape[0], stride) if (i+window_frames <= input_frames.shape[0])])
|
392 |
+
# print("Input images window: ", input_frames.shape) # Tx25x270x480x3
|
393 |
+
|
394 |
+
num_frames = input_frames.shape[0]
|
395 |
+
|
396 |
+
if num_frames<10:
|
397 |
+
msg = "Not enough frames to process! Please give a longer video as input."
|
398 |
+
return None, None, None, msg
|
399 |
+
|
400 |
+
return input_frames, num_frames, orig_masked_frames, "success"
|
401 |
+
|
402 |
+
def load_spectrograms(wav_file, num_frames, window_frames=25, stride=4):
|
403 |
+
|
404 |
+
'''
|
405 |
+
This function extracts the spectrogram from the audio file
|
406 |
+
|
407 |
+
Args:
|
408 |
+
- wav_file (string) : Path of the extracted audio file
|
409 |
+
- num_frames (int) : Number of frames to extract
|
410 |
+
- window_frames (int) : Number of frames in each window that is given as input to the model
|
411 |
+
- stride (int) : Stride to extract the audio frames
|
412 |
+
Returns:
|
413 |
+
- spec (array) : Spectrogram array window to be used as input to the model
|
414 |
+
- orig_spec (array) : Spectrogram array extracted from the audio file
|
415 |
+
- msg (string) : Message to be returned
|
416 |
+
'''
|
417 |
+
|
418 |
+
# Extract the audio from the input video file using ffmpeg
|
419 |
+
try:
|
420 |
+
wav = librosa.load(wav_file, sr=16000)[0]
|
421 |
+
except:
|
422 |
+
msg = "Oops! Could extract the spectrograms from the audio file. Please check the input and try again."
|
423 |
+
return None, None, msg
|
424 |
+
|
425 |
+
# Convert to tensor
|
426 |
+
wav = torch.FloatTensor(wav).unsqueeze(0)
|
427 |
+
mel, _, _, _ = wav2filterbanks(wav.to(device))
|
428 |
+
spec = mel.squeeze(0).cpu().numpy()
|
429 |
+
orig_spec = spec
|
430 |
+
spec = np.array([spec[i:i+(window_frames*stride), :] for i in range(0, spec.shape[0], stride) if (i+(window_frames*stride) <= spec.shape[0])])
|
431 |
+
|
432 |
+
if len(spec) != num_frames:
|
433 |
+
spec = spec[:num_frames]
|
434 |
+
frame_diff = np.abs(len(spec) - num_frames)
|
435 |
+
if frame_diff > 60:
|
436 |
+
print("The input video and audio length do not match - The results can be unreliable! Please check the input video.")
|
437 |
+
|
438 |
+
return spec, orig_spec, "success"
|
439 |
+
|
440 |
+
|
441 |
+
def calc_optimal_av_offset(vid_emb, aud_emb, num_avg_frames, model):
|
442 |
+
'''
|
443 |
+
This function calculates the audio-visual offset between the video and audio
|
444 |
+
|
445 |
+
Args:
|
446 |
+
- vid_emb (array) : Video embedding array
|
447 |
+
- aud_emb (array) : Audio embedding array
|
448 |
+
- num_avg_frames (int) : Number of frames to average the scores
|
449 |
+
- model (object) : Model object
|
450 |
+
Returns:
|
451 |
+
- offset (int) : Optimal audio-visual offset
|
452 |
+
- msg (string) : Message to be returned
|
453 |
+
'''
|
454 |
+
|
455 |
+
pos_vid_emb, all_aud_emb, pos_idx, stride, status = create_online_sync_negatives(vid_emb, aud_emb, num_avg_frames)
|
456 |
+
if status != "success":
|
457 |
+
return None, status
|
458 |
+
scores, _ = calc_av_scores(pos_vid_emb, all_aud_emb, model)
|
459 |
+
offset = scores.argmax()*stride - pos_idx
|
460 |
+
|
461 |
+
return offset.item(), "success"
|
462 |
+
|
463 |
+
def create_online_sync_negatives(vid_emb, aud_emb, num_avg_frames, stride=5):
|
464 |
+
|
465 |
+
'''
|
466 |
+
This function creates all possible positive and negative audio embeddings to compare and obtain the sync offset
|
467 |
+
|
468 |
+
Args:
|
469 |
+
- vid_emb (array) : Video embedding array
|
470 |
+
- aud_emb (array) : Audio embedding array
|
471 |
+
- num_avg_frames (int) : Number of frames to average the scores
|
472 |
+
- stride (int) : Stride to extract the negative windows
|
473 |
+
Returns:
|
474 |
+
- vid_emb_pos (array) : Positive video embedding array
|
475 |
+
- aud_emb_posneg (array) : All possible combinations of audio embedding array
|
476 |
+
- pos_idx_frame (int) : Positive video embedding array frame
|
477 |
+
- stride (int) : Stride used to extract the negative windows
|
478 |
+
- msg (string) : Message to be returned
|
479 |
+
'''
|
480 |
+
|
481 |
+
slice_size = num_avg_frames
|
482 |
+
aud_emb_posneg = aud_emb.squeeze(1).unfold(-1, slice_size, stride)
|
483 |
+
aud_emb_posneg = aud_emb_posneg.permute([0, 2, 1, 3])
|
484 |
+
aud_emb_posneg = aud_emb_posneg[:, :int(n_negative_samples/stride)+1]
|
485 |
+
|
486 |
+
pos_idx = (aud_emb_posneg.shape[1]//2)
|
487 |
+
pos_idx_frame = pos_idx*stride
|
488 |
+
|
489 |
+
min_offset_frames = -(pos_idx)*stride
|
490 |
+
max_offset_frames = (aud_emb_posneg.shape[1] - pos_idx - 1)*stride
|
491 |
+
print("With the current video length and the number of average frames, the model can predict the offsets in the range: [{}, {}]".format(min_offset_frames, max_offset_frames))
|
492 |
+
|
493 |
+
vid_emb_pos = vid_emb[:, :, pos_idx_frame:pos_idx_frame+slice_size]
|
494 |
+
if vid_emb_pos.shape[2] != slice_size:
|
495 |
+
msg = "Video is too short to use {} frames to average the scores. Please use a longer input video or reduce the number of average frames".format(slice_size)
|
496 |
+
return None, None, None, None, msg
|
497 |
+
|
498 |
+
return vid_emb_pos, aud_emb_posneg, pos_idx_frame, stride, "success"
|
499 |
+
|
500 |
+
def calc_av_scores(vid_emb, aud_emb, model):
|
501 |
+
|
502 |
+
'''
|
503 |
+
This function calls functions to calculate the audio-visual similarity and attention map between the video and audio embeddings
|
504 |
+
|
505 |
+
Args:
|
506 |
+
- vid_emb (array) : Video embedding array
|
507 |
+
- aud_emb (array) : Audio embedding array
|
508 |
+
- model (object) : Model object
|
509 |
+
Returns:
|
510 |
+
- scores (array) : Audio-visual similarity scores
|
511 |
+
- att_map (array) : Attention map
|
512 |
+
'''
|
513 |
+
|
514 |
+
scores = calc_att_map(vid_emb, aud_emb, model)
|
515 |
+
att_map = logsoftmax_2d(scores)
|
516 |
+
scores = scores.mean(-1)
|
517 |
+
|
518 |
+
return scores, att_map
|
519 |
+
|
520 |
+
def calc_att_map(vid_emb, aud_emb, model):
|
521 |
+
|
522 |
+
'''
|
523 |
+
This function calculates the similarity between the video and audio embeddings
|
524 |
+
|
525 |
+
Args:
|
526 |
+
- vid_emb (array) : Video embedding array
|
527 |
+
- aud_emb (array) : Audio embedding array
|
528 |
+
- model (object) : Model object
|
529 |
+
Returns:
|
530 |
+
- scores (array) : Audio-visual similarity scores
|
531 |
+
'''
|
532 |
+
|
533 |
+
vid_emb = vid_emb[:, :, None]
|
534 |
+
aud_emb = aud_emb.transpose(1, 2)
|
535 |
+
|
536 |
+
scores = run_func_in_parts(lambda x, y: (x * y).sum(1),
|
537 |
+
vid_emb,
|
538 |
+
aud_emb,
|
539 |
+
part_len=10,
|
540 |
+
dim=3,
|
541 |
+
device=device)
|
542 |
+
|
543 |
+
scores = model.logits_scale(scores[..., None]).squeeze(-1)
|
544 |
+
|
545 |
+
return scores
|
546 |
+
|
547 |
+
def generate_video(frames, audio_file, video_fname):
|
548 |
+
|
549 |
+
'''
|
550 |
+
This function generates the video from the frames and audio file
|
551 |
+
|
552 |
+
Args:
|
553 |
+
- frames (array) : Frames to be used to generate the video
|
554 |
+
- audio_file (string) : Path of the audio file
|
555 |
+
- video_fname (string) : Path of the video file
|
556 |
+
Returns:
|
557 |
+
- video_output (string) : Path of the video file
|
558 |
+
'''
|
559 |
+
|
560 |
+
fname = 'inference.avi'
|
561 |
+
video = cv2.VideoWriter(fname, cv2.VideoWriter_fourcc(*'DIVX'), 25, (frames[0].shape[1], frames[0].shape[0]))
|
562 |
+
|
563 |
+
for i in range(len(frames)):
|
564 |
+
video.write(cv2.cvtColor(frames[i], cv2.COLOR_BGR2RGB))
|
565 |
+
video.release()
|
566 |
+
|
567 |
+
no_sound_video = video_fname + '_nosound.mp4'
|
568 |
+
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -c copy -an -strict -2 %s' % (fname, no_sound_video), shell=True)
|
569 |
+
if status != 0:
|
570 |
+
msg = "Oops! Could not generate the video. Please check the input video and try again."
|
571 |
+
return None, msg
|
572 |
+
|
573 |
+
video_output = video_fname + '.mp4'
|
574 |
+
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -i %s -strict -2 -q:v 1 -shortest %s' %
|
575 |
+
(audio_file, no_sound_video, video_output), shell=True)
|
576 |
+
if status != 0:
|
577 |
+
msg = "Oops! Could not generate the video. Please check the input video and try again."
|
578 |
+
return None, msg
|
579 |
+
|
580 |
+
os.remove(fname)
|
581 |
+
os.remove(no_sound_video)
|
582 |
+
|
583 |
+
return video_output
|
584 |
+
|
585 |
+
def sync_correct_video(video_path, frames, wav_file, offset, result_folder, sample_rate=16000, fps=25):
|
586 |
+
|
587 |
+
'''
|
588 |
+
This function corrects the video and audio to sync with each other
|
589 |
+
|
590 |
+
Args:
|
591 |
+
- video_path (string) : Path of the video file
|
592 |
+
- frames (array) : Frames to be used to generate the video
|
593 |
+
- wav_file (string) : Path of the audio file
|
594 |
+
- offset (int) : Predicted sync-offset to be used to correct the video
|
595 |
+
- result_folder (string) : Path of the result folder to save the output sync-corrected video
|
596 |
+
- sample_rate (int) : Sample rate of the audio
|
597 |
+
- fps (int) : Frames per second of the video
|
598 |
+
Returns:
|
599 |
+
- video_output (string) : Path of the video file
|
600 |
+
'''
|
601 |
+
|
602 |
+
if offset == 0:
|
603 |
+
print("The input audio and video are in-sync! No need to perform sync correction.")
|
604 |
+
return video_path
|
605 |
+
|
606 |
+
print("Performing Sync Correction...")
|
607 |
+
corrected_frames = np.zeros_like(frames)
|
608 |
+
if offset > 0:
|
609 |
+
audio_offset = int(offset*(sample_rate/fps))
|
610 |
+
wav = librosa.core.load(wav_file, sr=sample_rate)[0]
|
611 |
+
corrected_wav = wav[audio_offset:]
|
612 |
+
corrected_wav_file = os.path.join(result_folder, "audio_sync_corrected.wav")
|
613 |
+
write(corrected_wav_file, sample_rate, corrected_wav)
|
614 |
+
wav_file = corrected_wav_file
|
615 |
+
corrected_frames = frames
|
616 |
+
elif offset < 0:
|
617 |
+
corrected_frames[0:len(frames)+offset] = frames[np.abs(offset):]
|
618 |
+
corrected_frames = corrected_frames[:len(frames)-np.abs(offset)]
|
619 |
+
|
620 |
+
corrected_video_path = os.path.join(result_folder, "result_sync_corrected")
|
621 |
+
video_output = generate_video(corrected_frames, wav_file, corrected_video_path)
|
622 |
+
|
623 |
+
return video_output
|
624 |
+
|
625 |
+
def process_video(video_path, num_avg_frames):
|
626 |
+
try:
|
627 |
+
# Extract the video filename
|
628 |
+
video_fname = os.path.basename(video_path.split(".")[0])
|
629 |
+
|
630 |
+
# Create folders to save the inputs and results
|
631 |
+
result_folder = os.path.join("results", video_fname)
|
632 |
+
result_folder_input = os.path.join(result_folder, "input")
|
633 |
+
result_folder_output = os.path.join(result_folder, "output")
|
634 |
+
|
635 |
+
if os.path.exists(result_folder):
|
636 |
+
rmtree(result_folder)
|
637 |
+
|
638 |
+
os.makedirs(result_folder)
|
639 |
+
os.makedirs(result_folder_input)
|
640 |
+
os.makedirs(result_folder_output)
|
641 |
+
|
642 |
+
|
643 |
+
# Preprocess the video
|
644 |
+
wav_file, fps, vid_path_processed, status = preprocess_video(video_path, result_folder_input)
|
645 |
+
if status != "success":
|
646 |
+
return status, None
|
647 |
+
|
648 |
+
# Resample the video to 25 fps if it is not already 25 fps
|
649 |
+
print("FPS of video: ", fps)
|
650 |
+
if fps!=25:
|
651 |
+
vid_path = resample_video(vid_path_processed, "preprocessed_video_25fps", result_folder_input)
|
652 |
+
orig_vid_path_25fps = resample_video(video_path, "input_video_25fps", result_folder_input)
|
653 |
+
else:
|
654 |
+
vid_path = vid_path_processed
|
655 |
+
orig_vid_path_25fps = video_path
|
656 |
+
|
657 |
+
# Load the original video frames (before pre-processing) - Needed for the final sync-correction
|
658 |
+
orig_frames, status = load_video_frames(orig_vid_path_25fps)
|
659 |
+
if status != "success":
|
660 |
+
return status, None
|
661 |
+
|
662 |
+
# Load the pre-processed video frames
|
663 |
+
frames, status = load_video_frames(vid_path)
|
664 |
+
if status != "success":
|
665 |
+
return status, None
|
666 |
+
|
667 |
+
|
668 |
+
if len(frames) < num_avg_frames:
|
669 |
+
return "Error: The input video is too short. Please use a longer input video.", None
|
670 |
+
|
671 |
+
# Load keypoints and check if gestures are visible
|
672 |
+
kp_dict, status = get_keypoints(frames)
|
673 |
+
if status != "success":
|
674 |
+
return status, None
|
675 |
+
|
676 |
+
status = check_visible_gestures(kp_dict)
|
677 |
+
if status != "success":
|
678 |
+
return status, None
|
679 |
+
|
680 |
+
# Load RGB frames
|
681 |
+
rgb_frames, num_frames, orig_masked_frames, status = load_rgb_masked_frames(frames, kp_dict, window_frames=25, width=480, height=270)
|
682 |
+
if status != "success":
|
683 |
+
return status, None
|
684 |
+
|
685 |
+
# Convert frames to tensor
|
686 |
+
rgb_frames = np.transpose(rgb_frames, (4, 0, 1, 2, 3))
|
687 |
+
rgb_frames = torch.FloatTensor(np.array(rgb_frames)).unsqueeze(0)
|
688 |
+
B = rgb_frames.size(0)
|
689 |
+
|
690 |
+
# Load spectrograms
|
691 |
+
spec, orig_spec, status = load_spectrograms(wav_file, num_frames, window_frames=25)
|
692 |
+
if status != "success":
|
693 |
+
return status, None
|
694 |
+
spec = torch.FloatTensor(spec).unsqueeze(0).unsqueeze(0).permute(0, 1, 2, 4, 3)
|
695 |
+
|
696 |
+
# Create input windows
|
697 |
+
video_sequences = torch.cat([rgb_frames[:, :, i] for i in range(rgb_frames.size(2))], dim=0)
|
698 |
+
audio_sequences = torch.cat([spec[:, :, i] for i in range(spec.size(2))], dim=0)
|
699 |
+
|
700 |
+
# Load the trained model
|
701 |
+
model = Transformer_RGB()
|
702 |
+
model = load_checkpoint(CHECKPOINT_PATH, model)
|
703 |
+
|
704 |
+
# Process in batches
|
705 |
+
batch_size = 12
|
706 |
+
video_emb = []
|
707 |
+
audio_emb = []
|
708 |
+
|
709 |
+
for i in tqdm(range(0, len(video_sequences), batch_size)):
|
710 |
+
video_inp = video_sequences[i:i+batch_size, ]
|
711 |
+
audio_inp = audio_sequences[i:i+batch_size, ]
|
712 |
+
|
713 |
+
vid_emb = model.forward_vid(video_inp.to(device))
|
714 |
+
vid_emb = torch.mean(vid_emb, axis=-1).unsqueeze(-1)
|
715 |
+
aud_emb = model.forward_aud(audio_inp.to(device))
|
716 |
+
|
717 |
+
video_emb.append(vid_emb.detach())
|
718 |
+
audio_emb.append(aud_emb.detach())
|
719 |
+
|
720 |
+
torch.cuda.empty_cache()
|
721 |
+
|
722 |
+
audio_emb = torch.cat(audio_emb, dim=0)
|
723 |
+
video_emb = torch.cat(video_emb, dim=0)
|
724 |
+
|
725 |
+
# L2 normalize embeddings
|
726 |
+
video_emb = torch.nn.functional.normalize(video_emb, p=2, dim=1)
|
727 |
+
audio_emb = torch.nn.functional.normalize(audio_emb, p=2, dim=1)
|
728 |
+
|
729 |
+
audio_emb = torch.split(audio_emb, B, dim=0)
|
730 |
+
audio_emb = torch.stack(audio_emb, dim=2)
|
731 |
+
audio_emb = audio_emb.squeeze(3)
|
732 |
+
audio_emb = audio_emb[:, None]
|
733 |
+
|
734 |
+
video_emb = torch.split(video_emb, B, dim=0)
|
735 |
+
video_emb = torch.stack(video_emb, dim=2)
|
736 |
+
video_emb = video_emb.squeeze(3)
|
737 |
+
|
738 |
+
# Calculate sync offset
|
739 |
+
pred_offset, status = calc_optimal_av_offset(video_emb, audio_emb, num_avg_frames, model)
|
740 |
+
if status != "success":
|
741 |
+
return status, None
|
742 |
+
print("Predicted offset: ", pred_offset)
|
743 |
+
|
744 |
+
# Generate sync-corrected video
|
745 |
+
video_output = sync_correct_video(video_path, orig_frames, wav_file, pred_offset, result_folder_output, sample_rate=16000, fps=fps)
|
746 |
+
print("Successfully generated the video:", video_output)
|
747 |
+
|
748 |
+
return f"Predicted offset: {pred_offset}", video_output
|
749 |
+
|
750 |
+
except Exception as e:
|
751 |
+
return f"Error: {str(e)}", None
|
752 |
+
|
753 |
+
|
754 |
+
|
755 |
+
if __name__ == "__main__":
|
756 |
+
|
757 |
+
# Define the custom HTML for the header
|
758 |
+
custom_css = """
|
759 |
+
<style>
|
760 |
+
body {
|
761 |
+
background-color: #ffffff;
|
762 |
+
color: #333333; /* Default text color */
|
763 |
+
}
|
764 |
+
.container {
|
765 |
+
max-width: 100% !important;
|
766 |
+
padding-left: 0 !important;
|
767 |
+
padding-right: 0 !important;
|
768 |
+
}
|
769 |
+
.header {
|
770 |
+
background-color: #f0f0f0;
|
771 |
+
color: #333333;
|
772 |
+
padding: 30px;
|
773 |
+
margin-bottom: 30px;
|
774 |
+
text-align: center;
|
775 |
+
font-family: 'Helvetica Neue', Arial, sans-serif;
|
776 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
777 |
+
}
|
778 |
+
.header h1 {
|
779 |
+
font-size: 36px;
|
780 |
+
margin-bottom: 15px;
|
781 |
+
font-weight: bold;
|
782 |
+
color: #333333; /* Explicitly set heading color */
|
783 |
+
}
|
784 |
+
.header h2 {
|
785 |
+
font-size: 24px;
|
786 |
+
margin-bottom: 10px;
|
787 |
+
color: #333333; /* Explicitly set subheading color */
|
788 |
+
}
|
789 |
+
.header p {
|
790 |
+
font-size: 18px;
|
791 |
+
margin: 5px 0;
|
792 |
+
color: #666666;
|
793 |
+
}
|
794 |
+
.blue-text {
|
795 |
+
color: #4a90e2;
|
796 |
+
}
|
797 |
+
/* Custom styles for slider container */
|
798 |
+
.slider-container {
|
799 |
+
background-color: white !important;
|
800 |
+
padding-top: 0.9em;
|
801 |
+
padding-bottom: 0.9em;
|
802 |
+
}
|
803 |
+
/* Add gap before examples */
|
804 |
+
.examples-holder {
|
805 |
+
margin-top: 2em;
|
806 |
+
}
|
807 |
+
/* Set fixed size for example videos */
|
808 |
+
.gradio-container .gradio-examples .gr-sample {
|
809 |
+
width: 240px !important;
|
810 |
+
height: 135px !important;
|
811 |
+
object-fit: cover;
|
812 |
+
display: inline-block;
|
813 |
+
margin-right: 10px;
|
814 |
+
}
|
815 |
+
|
816 |
+
.gradio-container .gradio-examples {
|
817 |
+
display: flex;
|
818 |
+
flex-wrap: wrap;
|
819 |
+
gap: 10px;
|
820 |
+
}
|
821 |
+
|
822 |
+
/* Ensure the parent container does not stretch */
|
823 |
+
.gradio-container .gradio-examples {
|
824 |
+
max-width: 100%;
|
825 |
+
overflow: hidden;
|
826 |
+
}
|
827 |
+
|
828 |
+
/* Additional styles to ensure proper sizing in Safari */
|
829 |
+
.gradio-container .gradio-examples .gr-sample img {
|
830 |
+
width: 240px !important;
|
831 |
+
height: 135px !important;
|
832 |
+
object-fit: cover;
|
833 |
+
}
|
834 |
+
</style>
|
835 |
+
"""
|
836 |
+
|
837 |
+
custom_html = custom_css + """
|
838 |
+
<div class="header">
|
839 |
+
<h1><span class="blue-text">GestSync:</span> Determining who is speaking without a talking head</h1>
|
840 |
+
<h2>Upload any video to predict the synchronization offset and generate a sync-corrected video</h2>
|
841 |
+
<p>Sindhu Hegde and Andrew Zisserman</p>
|
842 |
+
<p>VGG, University of Oxford</p>
|
843 |
+
</div>
|
844 |
+
"""
|
845 |
+
|
846 |
+
# Define paths to sample videos
|
847 |
+
sample_videos = [
|
848 |
+
"samples/sync_sample_1.mp4",
|
849 |
+
"samples/sync_sample_2.mp4",
|
850 |
+
]
|
851 |
+
|
852 |
+
# Define Gradio interface
|
853 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.pink)) as demo:
|
854 |
+
gr.HTML(custom_html)
|
855 |
+
with gr.Row():
|
856 |
+
with gr.Column():
|
857 |
+
with gr.Group(elem_classes="slider-container"):
|
858 |
+
num_avg_frames = gr.Slider(
|
859 |
+
minimum=50,
|
860 |
+
maximum=150,
|
861 |
+
step=5,
|
862 |
+
value=75,
|
863 |
+
label="Number of Average Frames",
|
864 |
+
)
|
865 |
+
video_input = gr.Video(label="Upload Video", height=400)
|
866 |
+
|
867 |
+
with gr.Column():
|
868 |
+
result_text = gr.Textbox(label="Result")
|
869 |
+
output_video = gr.Video(label="Sync Corrected Video", height=400)
|
870 |
+
|
871 |
+
with gr.Row():
|
872 |
+
submit_button = gr.Button("Submit", variant="primary")
|
873 |
+
clear_button = gr.Button("Clear")
|
874 |
+
|
875 |
+
submit_button.click(
|
876 |
+
fn=process_video,
|
877 |
+
inputs=[video_input, num_avg_frames],
|
878 |
+
outputs=[result_text, output_video]
|
879 |
+
)
|
880 |
+
|
881 |
+
clear_button.click(
|
882 |
+
fn=lambda: (None, 75, "", None),
|
883 |
+
inputs=[],
|
884 |
+
outputs=[video_input, num_avg_frames, result_text, output_video]
|
885 |
+
)
|
886 |
+
|
887 |
+
gr.HTML('<div class="examples-holder"></div>')
|
888 |
+
|
889 |
+
# Add examples
|
890 |
+
gr.Examples(
|
891 |
+
examples=sample_videos,
|
892 |
+
inputs=video_input,
|
893 |
+
outputs=None,
|
894 |
+
fn=None,
|
895 |
+
cache_examples=False,
|
896 |
+
)
|
897 |
+
|
898 |
+
# Launch the interface
|
899 |
+
demo.launch(allowed_paths=["."], server_name="0.0.0.0", server_port=7860, share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
decord==0.5.2
|
2 |
+
ffmpeg==1.4
|
3 |
+
librosa==0.9.2
|
4 |
+
mediapipe==0.9.1.0
|
5 |
+
numpy==1.26.4
|
6 |
+
opencv-python==4.9.0.80
|
7 |
+
opencv-python-headless==4.10.0.84
|
8 |
+
protobuf==3.20.3
|
9 |
+
protobuf-to-dict==0.1.0
|
10 |
+
protobuf3-to-dict==0.1.5
|
11 |
+
python_speech_features==0.6
|
12 |
+
scenedetect==0.6.4
|
13 |
+
scikit-learn==1.5.1
|
14 |
+
torch==1.10.0
|
15 |
+
torchvision==0.11.1
|
16 |
+
tqdm==4.66.4
|
17 |
+
ultralytics==8.2.70
|
18 |
+
ultralytics-thop==2.0.0
|
19 |
+
urllib3==1.26.19
|
samples/sync_sample_1.mp4
ADDED
Binary file (401 kB). View file
|
|
samples/sync_sample_2.mp4
ADDED
Binary file (256 kB). View file
|
|
sync_models/gestsync_models.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from sync_models.modules import *
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
class Transformer_RGB(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self):
|
11 |
+
super().__init__()
|
12 |
+
|
13 |
+
self.net_vid = self.build_net_vid()
|
14 |
+
self.ff_vid = nn.Sequential(
|
15 |
+
nn.Linear(512, 512),
|
16 |
+
nn.ReLU(),
|
17 |
+
nn.Linear(512, 1024)
|
18 |
+
)
|
19 |
+
|
20 |
+
self.pos_encoder = PositionalEncoding_RGB(d_model=512)
|
21 |
+
encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
|
22 |
+
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
|
23 |
+
|
24 |
+
self.net_aud = self.build_net_aud()
|
25 |
+
self.lstm = nn.LSTM(512, 256, num_layers=1, bidirectional=True, batch_first=True)
|
26 |
+
|
27 |
+
self.ff_aud = NetFC_2D(input_dim=512, hidden_dim=512, embed_dim=1024)
|
28 |
+
|
29 |
+
|
30 |
+
self.logits_scale = nn.Linear(1, 1, bias=False)
|
31 |
+
torch.nn.init.ones_(self.logits_scale.weight)
|
32 |
+
|
33 |
+
self.fc = nn.Linear(1,1)
|
34 |
+
|
35 |
+
def build_net_vid(self):
|
36 |
+
layers = [
|
37 |
+
{
|
38 |
+
'type': 'conv3d',
|
39 |
+
'n_channels': 64,
|
40 |
+
'kernel_size': (5, 7, 7),
|
41 |
+
'stride': (1, 3, 3),
|
42 |
+
'padding': (0),
|
43 |
+
'maxpool': {
|
44 |
+
'kernel_size': (1, 3, 3),
|
45 |
+
'stride': (1, 2, 2)
|
46 |
+
}
|
47 |
+
},
|
48 |
+
{
|
49 |
+
'type': 'conv3d',
|
50 |
+
'n_channels': 128,
|
51 |
+
'kernel_size': (1, 5, 5),
|
52 |
+
'stride': (1, 2, 2),
|
53 |
+
'padding': (0, 0, 0),
|
54 |
+
},
|
55 |
+
{
|
56 |
+
'type': 'conv3d',
|
57 |
+
'n_channels': 256,
|
58 |
+
'kernel_size': (1, 3, 3),
|
59 |
+
'stride': (1, 2, 2),
|
60 |
+
'padding': (0, 1, 1),
|
61 |
+
},
|
62 |
+
{
|
63 |
+
'type': 'conv3d',
|
64 |
+
'n_channels': 256,
|
65 |
+
'kernel_size': (1, 3, 3),
|
66 |
+
'stride': (1, 1, 2),
|
67 |
+
'padding': (0, 1, 1),
|
68 |
+
},
|
69 |
+
{
|
70 |
+
'type': 'conv3d',
|
71 |
+
'n_channels': 256,
|
72 |
+
'kernel_size': (1, 3, 3),
|
73 |
+
'stride': (1, 1, 1),
|
74 |
+
'padding': (0, 1, 1),
|
75 |
+
'maxpool': {
|
76 |
+
'kernel_size': (1, 3, 3),
|
77 |
+
'stride': (1, 2, 2)
|
78 |
+
}
|
79 |
+
},
|
80 |
+
{
|
81 |
+
'type': 'fc3d',
|
82 |
+
'n_channels': 512,
|
83 |
+
'kernel_size': (1, 4, 4),
|
84 |
+
'stride': (1, 1, 1),
|
85 |
+
'padding': (0),
|
86 |
+
},
|
87 |
+
]
|
88 |
+
return VGGNet(n_channels_in=3, layers=layers)
|
89 |
+
|
90 |
+
def build_net_aud(self):
|
91 |
+
layers = [
|
92 |
+
{
|
93 |
+
'type': 'conv2d',
|
94 |
+
'n_channels': 64,
|
95 |
+
'kernel_size': (3, 3),
|
96 |
+
'stride': (2, 2),
|
97 |
+
'padding': (1, 1),
|
98 |
+
'maxpool': {
|
99 |
+
'kernel_size': (3, 3),
|
100 |
+
'stride': (2, 2)
|
101 |
+
}
|
102 |
+
},
|
103 |
+
{
|
104 |
+
'type': 'conv2d',
|
105 |
+
'n_channels': 192,
|
106 |
+
'kernel_size': (3, 3),
|
107 |
+
'stride': (1, 2),
|
108 |
+
'padding': (1, 1),
|
109 |
+
'maxpool': {
|
110 |
+
'kernel_size': (3, 3),
|
111 |
+
'stride': (2, 2)
|
112 |
+
}
|
113 |
+
},
|
114 |
+
{
|
115 |
+
'type': 'conv2d',
|
116 |
+
'n_channels': 384,
|
117 |
+
'kernel_size': (3, 3),
|
118 |
+
'stride': (1, 1),
|
119 |
+
'padding': (1, 1),
|
120 |
+
},
|
121 |
+
{
|
122 |
+
'type': 'conv2d',
|
123 |
+
'n_channels': 256,
|
124 |
+
'kernel_size': (3, 3),
|
125 |
+
'stride': (1, 1),
|
126 |
+
'padding': (1, 1),
|
127 |
+
},
|
128 |
+
{
|
129 |
+
'type': 'conv2d',
|
130 |
+
'n_channels': 256,
|
131 |
+
'kernel_size': (3, 3),
|
132 |
+
'stride': (1, 1),
|
133 |
+
'padding': (1, 1),
|
134 |
+
'maxpool': {
|
135 |
+
'kernel_size': (2, 3),
|
136 |
+
'stride': (2, 2)
|
137 |
+
}
|
138 |
+
},
|
139 |
+
{
|
140 |
+
'type': 'fc2d',
|
141 |
+
'n_channels': 512,
|
142 |
+
'kernel_size': (4, 2),
|
143 |
+
'stride': (1, 1),
|
144 |
+
'padding': (0, 0),
|
145 |
+
},
|
146 |
+
]
|
147 |
+
return VGGNet(n_channels_in=1, layers=layers)
|
148 |
+
|
149 |
+
def forward_vid(self, x, return_feats=False):
|
150 |
+
out_conv = self.net_vid(x).squeeze(-1).squeeze(-1)
|
151 |
+
# print("Conv: ", out_conv.shape) # Bx1024x21x1x1
|
152 |
+
|
153 |
+
out = self.pos_encoder(out_conv.transpose(1,2))
|
154 |
+
out_trans = self.transformer_encoder(out)
|
155 |
+
# print("Transformer: ", out_trans.shape) # Bx21x1024
|
156 |
+
|
157 |
+
out = self.ff_vid(out_trans).transpose(1,2)
|
158 |
+
# print("MLP output: ", out.shape) # Bx1024
|
159 |
+
|
160 |
+
if return_feats:
|
161 |
+
return out, out_conv
|
162 |
+
else:
|
163 |
+
return out
|
164 |
+
|
165 |
+
def forward_aud(self, x):
|
166 |
+
out = self.net_aud(x)
|
167 |
+
out = self.ff_aud(out)
|
168 |
+
out = out.squeeze(-1)
|
169 |
+
return out
|
sync_models/modules.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.autograd import Variable
|
4 |
+
import math
|
5 |
+
|
6 |
+
class PositionalEncoding_RGB(nn.Module):
|
7 |
+
"Implement the PE function."
|
8 |
+
def __init__(self, d_model, dropout=0.1, max_len=50):
|
9 |
+
super(PositionalEncoding_RGB, self).__init__()
|
10 |
+
self.dropout = nn.Dropout(p=dropout)
|
11 |
+
|
12 |
+
# Compute the positional encodings once in log space.
|
13 |
+
pe = torch.zeros(max_len, d_model)
|
14 |
+
position = torch.arange(0, max_len).unsqueeze(1)
|
15 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
|
16 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
17 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
18 |
+
pe = pe.unsqueeze(0)
|
19 |
+
self.register_buffer('pe', pe)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = x + Variable(self.pe[:, :x.size(1)],
|
23 |
+
requires_grad=False)
|
24 |
+
return self.dropout(x)
|
25 |
+
|
26 |
+
def calc_receptive_field(layers, imsize, layer_names=None):
|
27 |
+
if layer_names is not None:
|
28 |
+
print("-------Net summary------")
|
29 |
+
currentLayer = [imsize, 1, 1, 0.5]
|
30 |
+
|
31 |
+
for l_id, layer in enumerate(layers):
|
32 |
+
conv = [
|
33 |
+
layer[key][-1] if type(layer[key]) in [list, tuple] else layer[key]
|
34 |
+
for key in ['kernel_size', 'stride', 'padding']
|
35 |
+
]
|
36 |
+
currentLayer = outFromIn(conv, currentLayer)
|
37 |
+
if 'maxpool' in layer:
|
38 |
+
conv = [
|
39 |
+
(layer['maxpool'][key][-1] if type(layer['maxpool'][key])
|
40 |
+
in [list, tuple] else layer['maxpool'][key]) if
|
41 |
+
(not key == 'padding' or 'padding' in layer['maxpool']) else 0
|
42 |
+
for key in ['kernel_size', 'stride', 'padding']
|
43 |
+
]
|
44 |
+
currentLayer = outFromIn(conv, currentLayer, ceil_mode=False)
|
45 |
+
return currentLayer
|
46 |
+
|
47 |
+
def outFromIn(conv, layerIn, ceil_mode=True):
|
48 |
+
n_in = layerIn[0]
|
49 |
+
j_in = layerIn[1]
|
50 |
+
r_in = layerIn[2]
|
51 |
+
start_in = layerIn[3]
|
52 |
+
k = conv[0]
|
53 |
+
s = conv[1]
|
54 |
+
p = conv[2]
|
55 |
+
|
56 |
+
n_out = math.floor((n_in - k + 2 * p) / s) + 1
|
57 |
+
actualP = (n_out - 1) * s - n_in + k
|
58 |
+
pR = math.ceil(actualP / 2)
|
59 |
+
pL = math.floor(actualP / 2)
|
60 |
+
|
61 |
+
j_out = j_in * s
|
62 |
+
r_out = r_in + (k - 1) * j_in
|
63 |
+
start_out = start_in + ((k - 1) / 2 - pL) * j_in
|
64 |
+
return n_out, j_out, r_out, start_out
|
65 |
+
|
66 |
+
class DebugModule(nn.Module):
|
67 |
+
"""
|
68 |
+
Wrapper class for printing the activation dimensions
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(self, name=None):
|
72 |
+
super().__init__()
|
73 |
+
self.name = name
|
74 |
+
self.debug_log = True
|
75 |
+
|
76 |
+
def debug_line(self, layer_str, output, memuse=1, final_call=False):
|
77 |
+
if self.debug_log:
|
78 |
+
namestr = '{}: '.format(self.name) if self.name is not None else ''
|
79 |
+
# print('{}{:80s}: dims {}'.format(namestr, repr(layer_str),
|
80 |
+
# output.shape))
|
81 |
+
|
82 |
+
if final_call:
|
83 |
+
self.debug_log = False
|
84 |
+
# print()
|
85 |
+
|
86 |
+
class VGGNet(DebugModule):
|
87 |
+
|
88 |
+
conv_dict = {
|
89 |
+
'conv1d': nn.Conv1d,
|
90 |
+
'conv2d': nn.Conv2d,
|
91 |
+
'conv3d': nn.Conv3d,
|
92 |
+
'fc1d': nn.Conv1d,
|
93 |
+
'fc2d': nn.Conv2d,
|
94 |
+
'fc3d': nn.Conv3d,
|
95 |
+
}
|
96 |
+
|
97 |
+
pool_dict = {
|
98 |
+
'conv1d': nn.MaxPool1d,
|
99 |
+
'conv2d': nn.MaxPool2d,
|
100 |
+
'conv3d': nn.MaxPool3d,
|
101 |
+
}
|
102 |
+
|
103 |
+
norm_dict = {
|
104 |
+
'conv1d': nn.BatchNorm1d,
|
105 |
+
'conv2d': nn.BatchNorm2d,
|
106 |
+
'conv3d': nn.BatchNorm3d,
|
107 |
+
'fc1d': nn.BatchNorm1d,
|
108 |
+
'fc2d': nn.BatchNorm2d,
|
109 |
+
'fc3d': nn.BatchNorm3d,
|
110 |
+
}
|
111 |
+
|
112 |
+
def __init__(self, n_channels_in, layers):
|
113 |
+
super(VGGNet, self).__init__()
|
114 |
+
|
115 |
+
self.layers = layers
|
116 |
+
|
117 |
+
n_channels_prev = n_channels_in
|
118 |
+
for l_id, lr in enumerate(self.layers):
|
119 |
+
l_id += 1
|
120 |
+
name = 'fc' if 'fc' in lr['type'] else 'conv'
|
121 |
+
conv_type = self.conv_dict[lr['type']]
|
122 |
+
norm_type = self.norm_dict[lr['type']]
|
123 |
+
self.__setattr__(
|
124 |
+
'{:s}{:d}'.format(name, l_id),
|
125 |
+
conv_type(n_channels_prev,
|
126 |
+
lr['n_channels'],
|
127 |
+
kernel_size=lr['kernel_size'],
|
128 |
+
stride=lr['stride'],
|
129 |
+
padding=lr['padding']))
|
130 |
+
n_channels_prev = lr['n_channels']
|
131 |
+
self.__setattr__('bn{:d}'.format(l_id), norm_type(lr['n_channels']))
|
132 |
+
if 'maxpool' in lr:
|
133 |
+
pool_type = self.pool_dict[lr['type']]
|
134 |
+
padding = lr['maxpool']['padding'] if 'padding' in lr[
|
135 |
+
'maxpool'] else 0
|
136 |
+
self.__setattr__(
|
137 |
+
'mp{:d}'.format(l_id),
|
138 |
+
pool_type(kernel_size=lr['maxpool']['kernel_size'],
|
139 |
+
stride=lr['maxpool']['stride'],
|
140 |
+
padding=padding),
|
141 |
+
)
|
142 |
+
|
143 |
+
def forward(self, inp):
|
144 |
+
self.debug_line('Input', inp)
|
145 |
+
out = inp
|
146 |
+
for l_id, lr in enumerate(self.layers):
|
147 |
+
l_id += 1
|
148 |
+
name = 'fc' if 'fc' in lr['type'] else 'conv'
|
149 |
+
out = self.__getattr__('{:s}{:d}'.format(name, l_id))(out)
|
150 |
+
out = self.__getattr__('bn{:d}'.format(l_id))(out)
|
151 |
+
out = nn.ReLU(inplace=True)(out)
|
152 |
+
self.debug_line(self.__getattr__('{:s}{:d}'.format(name, l_id)),
|
153 |
+
out)
|
154 |
+
if 'maxpool' in lr:
|
155 |
+
out = self.__getattr__('mp{:d}'.format(l_id))(out)
|
156 |
+
self.debug_line(self.__getattr__('mp{:d}'.format(l_id)), out)
|
157 |
+
|
158 |
+
self.debug_line('Output', out, final_call=True)
|
159 |
+
|
160 |
+
return out
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
class NetFC(DebugModule):
|
165 |
+
|
166 |
+
def __init__(self, input_dim, hidden_dim, embed_dim):
|
167 |
+
super(NetFC, self).__init__()
|
168 |
+
self.fc7 = nn.Conv3d(input_dim, hidden_dim, kernel_size=(1, 1, 1))
|
169 |
+
self.bn7 = nn.BatchNorm3d(hidden_dim)
|
170 |
+
self.fc8 = nn.Conv3d(hidden_dim, embed_dim, kernel_size=(1, 1, 1))
|
171 |
+
|
172 |
+
def forward(self, inp):
|
173 |
+
out = self.fc7(inp)
|
174 |
+
self.debug_line(self.fc7, out)
|
175 |
+
out = self.bn7(out)
|
176 |
+
out = nn.ReLU(inplace=True)(out)
|
177 |
+
out = self.fc8(out)
|
178 |
+
self.debug_line(self.fc8, out, final_call=True)
|
179 |
+
return out
|
180 |
+
|
181 |
+
class NetFC_2D(DebugModule):
|
182 |
+
|
183 |
+
def __init__(self, input_dim, hidden_dim, embed_dim):
|
184 |
+
super(NetFC_2D, self).__init__()
|
185 |
+
self.fc7 = nn.Conv2d(input_dim, hidden_dim, kernel_size=(1, 1))
|
186 |
+
self.bn7 = nn.BatchNorm2d(hidden_dim)
|
187 |
+
self.fc8 = nn.Conv2d(hidden_dim, embed_dim, kernel_size=(1, 1))
|
188 |
+
|
189 |
+
def forward(self, inp):
|
190 |
+
out = self.fc7(inp)
|
191 |
+
self.debug_line(self.fc7, out)
|
192 |
+
out = self.bn7(out)
|
193 |
+
out = nn.ReLU(inplace=True)(out)
|
194 |
+
out = self.fc8(out)
|
195 |
+
self.debug_line(self.fc8, out, final_call=True)
|
196 |
+
return out
|
utils/audio_utils.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from scipy.io import wavfile
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
8 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
9 |
+
|
10 |
+
|
11 |
+
audio_opts = {
|
12 |
+
'sample_rate': 16000,
|
13 |
+
'n_fft': 512,
|
14 |
+
'win_length': 320,
|
15 |
+
'hop_length': 160,
|
16 |
+
'n_mel': 80,
|
17 |
+
}
|
18 |
+
|
19 |
+
|
20 |
+
def load_wav(path, fr=0, to=10000, sample_rate=16000):
|
21 |
+
"""Loads Audio wav from path at time indices given by fr, to (seconds)"""
|
22 |
+
|
23 |
+
_, wav = wavfile.read(path)
|
24 |
+
fr_aud = int(np.round(fr * sample_rate))
|
25 |
+
to_aud = int(np.round((to) * sample_rate))
|
26 |
+
|
27 |
+
wav = wav[fr_aud:to_aud]
|
28 |
+
|
29 |
+
return wav
|
30 |
+
|
31 |
+
|
32 |
+
def wav2filterbanks(wav, mel_basis=None):
|
33 |
+
"""
|
34 |
+
:param wav: Tensor b x T
|
35 |
+
"""
|
36 |
+
|
37 |
+
assert len(wav.shape) == 2, 'Need batch of wavs as input'
|
38 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
39 |
+
# device = 'cpu'
|
40 |
+
spect = torch.stft(wav,
|
41 |
+
n_fft=audio_opts['n_fft'],
|
42 |
+
hop_length=audio_opts['hop_length'],
|
43 |
+
win_length=audio_opts['win_length'],
|
44 |
+
window=torch.hann_window(audio_opts['win_length']).to(device),
|
45 |
+
center=True,
|
46 |
+
pad_mode='reflect',
|
47 |
+
normalized=False,
|
48 |
+
onesided=True) # b x F x T x 2
|
49 |
+
spect = spect[:, :, :-1, :]
|
50 |
+
|
51 |
+
# ----- Log filterbanks --------------
|
52 |
+
# mag spectrogram - # b x F x T
|
53 |
+
mag = power_spect = torch.norm(spect, dim=-1)
|
54 |
+
phase = torch.atan2(spect[..., 1], spect[..., 0])
|
55 |
+
if mel_basis is None:
|
56 |
+
# Build a Mel filter
|
57 |
+
mel_basis = torch.from_numpy(
|
58 |
+
librosa.filters.mel(audio_opts['sample_rate'],
|
59 |
+
audio_opts['n_fft'],
|
60 |
+
n_mels=audio_opts['n_mel'],
|
61 |
+
fmin=0,
|
62 |
+
fmax=int(audio_opts['sample_rate'] / 2)))
|
63 |
+
mel_basis = mel_basis.float().to(power_spect.device)
|
64 |
+
features = torch.log(torch.matmul(mel_basis, power_spect) +
|
65 |
+
1e-20) # b x F x T
|
66 |
+
features = features.permute([0, 2, 1]).contiguous() # b x T x F
|
67 |
+
# -------------------
|
68 |
+
|
69 |
+
# norm_axis = 1 # normalize every sample over time
|
70 |
+
# mean = features.mean(dim=norm_axis, keepdim=True) # b x 1 x F
|
71 |
+
# std_dev = features.std(dim=norm_axis, keepdim=True) # b x 1 x F
|
72 |
+
# features = (features - mean) / std_dev # b x T x F
|
73 |
+
|
74 |
+
return features, mag, phase, mel_basis
|
75 |
+
|
76 |
+
|
77 |
+
def torch_mag_phase_2_np_complex(mag_spect, phase):
|
78 |
+
complex_spect_2d = torch.stack(
|
79 |
+
[mag_spect * torch.cos(phase), mag_spect * torch.sin(phase)], -1)
|
80 |
+
complex_spect_np = complex_spect_2d.cpu().detach().numpy()
|
81 |
+
complex_spect_np = complex_spect_np[..., 0] + 1j * complex_spect_np[..., 1]
|
82 |
+
return complex_spect_np
|
83 |
+
|
84 |
+
|
85 |
+
def torch_mag_phase_2_complex_as_2d(mag_spect, phase):
|
86 |
+
complex_spect_2d = torch.stack(
|
87 |
+
[mag_spect * torch.cos(phase), mag_spect * torch.sin(phase)], -1)
|
88 |
+
return complex_spect_2d
|
89 |
+
|
90 |
+
|
91 |
+
def torch_phase_from_normalized_complex(spect):
|
92 |
+
phase = torch.atan2(spect[..., 1], spect[..., 0])
|
93 |
+
return phase
|
94 |
+
|
95 |
+
|
96 |
+
def reconstruct_wav_from_mag_phase(mag, phase):
|
97 |
+
spect = torch_mag_phase_2_np_complex(mag, phase)
|
98 |
+
wav = np.stack([
|
99 |
+
librosa.core.istft(spect[ii],
|
100 |
+
hop_length=audio_opts['hop_length'],
|
101 |
+
win_length=audio_opts['win_length'],
|
102 |
+
center=True) for ii in range(spect.shape[0])
|
103 |
+
])
|
104 |
+
|
105 |
+
return wav
|
utils/inference_utils.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
def run_func_in_parts(func, vid_emb, aud_emb, part_len, dim, device):
|
5 |
+
"""
|
6 |
+
Run given function in parts, spliting the inputs on dimension dim
|
7 |
+
This is used to save memory when inputs too large to compute on gpu
|
8 |
+
"""
|
9 |
+
dist_chunk = []
|
10 |
+
for v_spl, a_spl in list(
|
11 |
+
zip(vid_emb.split(part_len, dim=dim),
|
12 |
+
aud_emb.split(part_len, dim=dim))):
|
13 |
+
dist_chunk.append(func(v_spl.to(device), a_spl.to(device)))
|
14 |
+
dist = torch.cat(dist_chunk, dim - 1)
|
15 |
+
return dist
|
16 |
+
|
17 |
+
def logsoftmax_2d(logits):
|
18 |
+
# Log softmax on last 2 dims because torch won't allow multiple dims
|
19 |
+
orig_shape = logits.shape
|
20 |
+
logprobs = torch.nn.LogSoftmax(dim=-1)(
|
21 |
+
logits.reshape(list(logits.shape[:-2]) + [-1])).reshape(orig_shape)
|
22 |
+
return logprobs
|