Spaces:
Running
on
Zero
Running
on
Zero
sindhuhegde
commited on
Commit
•
f0d8178
1
Parent(s):
4b11292
Update app
Browse files- app.py +2 -0
- utils/audio_utils.py +74 -72
app.py
CHANGED
@@ -33,6 +33,7 @@ use_cuda = torch.cuda.is_available()
|
|
33 |
batch_size = 12
|
34 |
fps = 25
|
35 |
n_negative_samples = 100
|
|
|
36 |
|
37 |
# Initialize the mediapipe holistic keypoint detection model
|
38 |
holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
@@ -420,6 +421,7 @@ def load_rgb_masked_frames(input_frames, kp_dict, asd=False, stride=1, window_fr
|
|
420 |
|
421 |
input_frames = np.array([input_frames[i:i+window_frames, :, :] for i in range(0,input_frames.shape[0], stride) if (i+window_frames <= input_frames.shape[0])])
|
422 |
# print("Input images window: ", input_frames.shape) # Tx25x270x480x3
|
|
|
423 |
|
424 |
num_frames = input_frames.shape[0]
|
425 |
|
|
|
33 |
batch_size = 12
|
34 |
fps = 25
|
35 |
n_negative_samples = 100
|
36 |
+
print("Device: ", device)
|
37 |
|
38 |
# Initialize the mediapipe holistic keypoint detection model
|
39 |
holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
|
|
421 |
|
422 |
input_frames = np.array([input_frames[i:i+window_frames, :, :] for i in range(0,input_frames.shape[0], stride) if (i+window_frames <= input_frames.shape[0])])
|
423 |
# print("Input images window: ", input_frames.shape) # Tx25x270x480x3
|
424 |
+
print("Successfully created masked input frames")
|
425 |
|
426 |
num_frames = input_frames.shape[0]
|
427 |
|
utils/audio_utils.py
CHANGED
@@ -9,97 +9,99 @@ warnings.filterwarnings("ignore", category=FutureWarning)
|
|
9 |
|
10 |
|
11 |
audio_opts = {
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
}
|
18 |
|
19 |
|
20 |
def load_wav(path, fr=0, to=10000, sample_rate=16000):
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
30 |
|
31 |
|
32 |
def wav2filterbanks(wav, mel_basis=None):
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
75 |
|
76 |
|
77 |
def torch_mag_phase_2_np_complex(mag_spect, phase):
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
84 |
|
85 |
def torch_mag_phase_2_complex_as_2d(mag_spect, phase):
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
90 |
|
91 |
def torch_phase_from_normalized_complex(spect):
|
92 |
-
|
93 |
-
|
94 |
|
95 |
|
96 |
def reconstruct_wav_from_mag_phase(mag, phase):
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
9 |
|
10 |
|
11 |
audio_opts = {
|
12 |
+
'sample_rate': 16000,
|
13 |
+
'n_fft': 512,
|
14 |
+
'win_length': 320,
|
15 |
+
'hop_length': 160,
|
16 |
+
'n_mel': 80,
|
17 |
}
|
18 |
|
19 |
|
20 |
def load_wav(path, fr=0, to=10000, sample_rate=16000):
|
21 |
+
"""Loads Audio wav from path at time indices given by fr, to (seconds)"""
|
22 |
|
23 |
+
_, wav = wavfile.read(path)
|
24 |
+
fr_aud = int(np.round(fr * sample_rate))
|
25 |
+
to_aud = int(np.round((to) * sample_rate))
|
26 |
|
27 |
+
wav = wav[fr_aud:to_aud]
|
28 |
|
29 |
+
return wav
|
30 |
|
31 |
|
32 |
def wav2filterbanks(wav, mel_basis=None):
|
33 |
+
"""
|
34 |
+
:param wav: Tensor b x T
|
35 |
+
"""
|
36 |
+
|
37 |
+
assert len(wav.shape) == 2, 'Need batch of wavs as input'
|
38 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
39 |
+
# device = 'cpu'
|
40 |
+
spect = torch.stft(wav,
|
41 |
+
return_complex=True,
|
42 |
+
n_fft=audio_opts['n_fft'],
|
43 |
+
hop_length=audio_opts['hop_length'],
|
44 |
+
win_length=audio_opts['win_length'],
|
45 |
+
window=torch.hann_window(audio_opts['win_length']).to(device),
|
46 |
+
center=True,
|
47 |
+
pad_mode='reflect',
|
48 |
+
normalized=False,
|
49 |
+
onesided=True) # b x F x T x 2
|
50 |
+
spect = torch.view_as_real(spect)
|
51 |
+
spect = spect[:, :, :-1, :]
|
52 |
+
|
53 |
+
# ----- Log filterbanks --------------
|
54 |
+
# mag spectrogram - # b x F x T
|
55 |
+
mag = power_spect = torch.norm(spect, dim=-1)
|
56 |
+
phase = torch.atan2(spect[..., 1], spect[..., 0])
|
57 |
+
if mel_basis is None:
|
58 |
+
# Build a Mel filter
|
59 |
+
mel_basis = torch.from_numpy(
|
60 |
+
librosa.filters.mel(audio_opts['sample_rate'],
|
61 |
+
audio_opts['n_fft'],
|
62 |
+
n_mels=audio_opts['n_mel'],
|
63 |
+
fmin=0,
|
64 |
+
fmax=int(audio_opts['sample_rate'] / 2)))
|
65 |
+
mel_basis = mel_basis.float().to(power_spect.device)
|
66 |
+
features = torch.log(torch.matmul(mel_basis, power_spect) +
|
67 |
+
1e-20) # b x F x T
|
68 |
+
features = features.permute([0, 2, 1]).contiguous() # b x T x F
|
69 |
+
# -------------------
|
70 |
+
|
71 |
+
# norm_axis = 1 # normalize every sample over time
|
72 |
+
# mean = features.mean(dim=norm_axis, keepdim=True) # b x 1 x F
|
73 |
+
# std_dev = features.std(dim=norm_axis, keepdim=True) # b x 1 x F
|
74 |
+
# features = (features - mean) / std_dev # b x T x F
|
75 |
+
|
76 |
+
return features, mag, phase, mel_basis
|
77 |
|
78 |
|
79 |
def torch_mag_phase_2_np_complex(mag_spect, phase):
|
80 |
+
complex_spect_2d = torch.stack(
|
81 |
+
[mag_spect * torch.cos(phase), mag_spect * torch.sin(phase)], -1)
|
82 |
+
complex_spect_np = complex_spect_2d.cpu().detach().numpy()
|
83 |
+
complex_spect_np = complex_spect_np[..., 0] + 1j * complex_spect_np[..., 1]
|
84 |
+
return complex_spect_np
|
85 |
|
86 |
|
87 |
def torch_mag_phase_2_complex_as_2d(mag_spect, phase):
|
88 |
+
complex_spect_2d = torch.stack(
|
89 |
+
[mag_spect * torch.cos(phase), mag_spect * torch.sin(phase)], -1)
|
90 |
+
return complex_spect_2d
|
91 |
|
92 |
|
93 |
def torch_phase_from_normalized_complex(spect):
|
94 |
+
phase = torch.atan2(spect[..., 1], spect[..., 0])
|
95 |
+
return phase
|
96 |
|
97 |
|
98 |
def reconstruct_wav_from_mag_phase(mag, phase):
|
99 |
+
spect = torch_mag_phase_2_np_complex(mag, phase)
|
100 |
+
wav = np.stack([
|
101 |
+
librosa.core.istft(spect[ii],
|
102 |
+
hop_length=audio_opts['hop_length'],
|
103 |
+
win_length=audio_opts['win_length'],
|
104 |
+
center=True) for ii in range(spect.shape[0])
|
105 |
+
])
|
106 |
+
|
107 |
+
return wav
|