DeepDanboorux / app.py
hysts's picture
hysts HF staff
Update
b8ce03a
raw
history blame
3.35 kB
#!/usr/bin/env python
from __future__ import annotations
import os
import pathlib
import tarfile
import deepdanbooru as dd
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import tensorflow as tf
DESCRIPTION = "# [KichangKim/DeepDanbooru](https://github.com/KichangKim/DeepDanbooru)"
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path("images")
if not image_dir.exists():
path = huggingface_hub.hf_hub_download("public-data/sample-images-TADNE", "images.tar.gz", repo_type="dataset")
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob("*"))
def load_model() -> tf.keras.Model:
path = huggingface_hub.hf_hub_download("public-data/DeepDanbooru", "model-resnet_custom_v3.h5")
model = tf.keras.models.load_model(path)
return model
def load_labels() -> list[str]:
path = huggingface_hub.hf_hub_download("public-data/DeepDanbooru", "tags.txt")
with open(path) as f:
labels = [line.strip() for line in f.readlines()]
return labels
model = load_model()
labels = load_labels()
def predict(image: PIL.Image.Image, score_threshold: float) -> tuple[dict[str, float], dict[str, float], str]:
_, height, width, _ = model.input_shape
image = np.asarray(image)
image = tf.image.resize(image, size=(height, width), method=tf.image.ResizeMethod.AREA, preserve_aspect_ratio=True)
image = image.numpy()
image = dd.image.transform_and_pad_image(image, width, height)
image = image / 255.0
probs = model.predict(image[None, ...])[0]
probs = probs.astype(float)
indices = np.argsort(probs)[::-1]
result_all = dict()
result_threshold = dict()
for index in indices:
label = labels[index]
prob = probs[index]
result_all[label] = prob
if prob < score_threshold:
break
result_threshold[label] = prob
result_text = ", ".join(result_all.keys())
return result_threshold, result_all, result_text
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.5] for path in image_paths]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input", type="pil")
score_threshold = gr.Slider(label="Score threshold", minimum=0, maximum=1, step=0.05, value=0.5)
run_button = gr.Button("Run")
with gr.Column():
with gr.Tabs():
with gr.Tab(label="Output"):
result = gr.Label(label="Output", show_label=False)
with gr.Tab(label="JSON"):
result_json = gr.JSON(label="JSON output", show_label=False)
with gr.Tab(label="Text"):
result_text = gr.Text(label="Text output", show_label=False, lines=5)
gr.Examples(
examples=examples,
inputs=[image, score_threshold],
outputs=[result, result_json, result_text],
fn=predict,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
run_button.click(
fn=predict,
inputs=[image, score_threshold],
outputs=[result, result_json, result_text],
api_name="predict",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()