Spaces:
Sleeping
Sleeping
siriuszeina
commited on
Commit
•
b689b5b
1
Parent(s):
277ad49
Update app.py
Browse files
app.py
CHANGED
@@ -13,31 +13,26 @@ import numpy as np
|
|
13 |
import PIL.Image
|
14 |
import tensorflow as tf
|
15 |
|
16 |
-
DESCRIPTION =
|
17 |
|
18 |
|
19 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
20 |
-
image_dir = pathlib.Path(
|
21 |
if not image_dir.exists():
|
22 |
-
path = huggingface_hub.hf_hub_download(
|
23 |
-
'public-data/sample-images-TADNE',
|
24 |
-
'images.tar.gz',
|
25 |
-
repo_type='dataset')
|
26 |
with tarfile.open(path) as f:
|
27 |
f.extractall()
|
28 |
-
return sorted(image_dir.glob(
|
29 |
|
30 |
|
31 |
def load_model() -> tf.keras.Model:
|
32 |
-
path = huggingface_hub.hf_hub_download(
|
33 |
-
'model-resnet_custom_v3.h5')
|
34 |
model = tf.keras.models.load_model(path)
|
35 |
return model
|
36 |
|
37 |
|
38 |
def load_labels() -> list[str]:
|
39 |
-
path = huggingface_hub.hf_hub_download(
|
40 |
-
'tags.txt')
|
41 |
with open(path) as f:
|
42 |
labels = [line.strip() for line in f.readlines()]
|
43 |
return labels
|
@@ -47,18 +42,13 @@ model = load_model()
|
|
47 |
labels = load_labels()
|
48 |
|
49 |
|
50 |
-
def predict(
|
51 |
-
image: PIL.Image.Image, score_threshold: float
|
52 |
-
) -> tuple[dict[str, float], dict[str, float], str]:
|
53 |
_, height, width, _ = model.input_shape
|
54 |
image = np.asarray(image)
|
55 |
-
image = tf.image.resize(image,
|
56 |
-
size=(height, width),
|
57 |
-
method=tf.image.ResizeMethod.AREA,
|
58 |
-
preserve_aspect_ratio=True)
|
59 |
image = image.numpy()
|
60 |
image = dd.image.transform_and_pad_image(image, width, height)
|
61 |
-
image = image / 255.
|
62 |
probs = model.predict(image[None, ...])[0]
|
63 |
probs = probs.astype(float)
|
64 |
|
@@ -72,45 +62,35 @@ def predict(
|
|
72 |
if prob < score_threshold:
|
73 |
break
|
74 |
result_threshold[label] = prob
|
75 |
-
result_text =
|
76 |
return result_threshold, result_all, result_text
|
77 |
|
78 |
|
79 |
image_paths = load_sample_image_paths()
|
80 |
examples = [[path.as_posix(), 0.5] for path in image_paths]
|
81 |
|
82 |
-
with gr.Blocks(css=
|
83 |
gr.Markdown(DESCRIPTION)
|
84 |
with gr.Row():
|
85 |
with gr.Column():
|
86 |
-
image = gr.Image(label=
|
87 |
-
score_threshold = gr.Slider(label=
|
88 |
-
|
89 |
-
maximum=1,
|
90 |
-
step=0.05,
|
91 |
-
value=0.5)
|
92 |
-
run_button = gr.Button('Run')
|
93 |
with gr.Column():
|
94 |
with gr.Tabs():
|
95 |
-
with gr.Tab(label=
|
96 |
-
result = gr.Label(label=
|
97 |
-
with gr.Tab(label=
|
98 |
-
result_json = gr.JSON(label=
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
show_label=False,
|
103 |
-
lines=5)
|
104 |
-
# gr.Examples(examples=examples,
|
105 |
-
# inputs=[image, score_threshold],
|
106 |
-
# outputs=[result, result_json, result_text],
|
107 |
-
# fn=predict,
|
108 |
-
# cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
|
109 |
-
|
110 |
run_button.click(
|
111 |
fn=predict,
|
112 |
inputs=[image, score_threshold],
|
113 |
outputs=[result, result_json, result_text],
|
114 |
-
api_name=
|
115 |
)
|
116 |
-
|
|
|
|
|
|
13 |
import PIL.Image
|
14 |
import tensorflow as tf
|
15 |
|
16 |
+
DESCRIPTION = "# [KichangKim/DeepDanbooru](https://github.com/KichangKim/DeepDanbooru)"
|
17 |
|
18 |
|
19 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
20 |
+
image_dir = pathlib.Path("images")
|
21 |
if not image_dir.exists():
|
22 |
+
path = huggingface_hub.hf_hub_download("public-data/sample-images-TADNE", "images.tar.gz", repo_type="dataset")
|
|
|
|
|
|
|
23 |
with tarfile.open(path) as f:
|
24 |
f.extractall()
|
25 |
+
return sorted(image_dir.glob("*"))
|
26 |
|
27 |
|
28 |
def load_model() -> tf.keras.Model:
|
29 |
+
path = huggingface_hub.hf_hub_download("public-data/DeepDanbooru", "model-resnet_custom_v3.h5")
|
|
|
30 |
model = tf.keras.models.load_model(path)
|
31 |
return model
|
32 |
|
33 |
|
34 |
def load_labels() -> list[str]:
|
35 |
+
path = huggingface_hub.hf_hub_download("public-data/DeepDanbooru", "tags.txt")
|
|
|
36 |
with open(path) as f:
|
37 |
labels = [line.strip() for line in f.readlines()]
|
38 |
return labels
|
|
|
42 |
labels = load_labels()
|
43 |
|
44 |
|
45 |
+
def predict(image: PIL.Image.Image, score_threshold: float) -> tuple[dict[str, float], dict[str, float], str]:
|
|
|
|
|
46 |
_, height, width, _ = model.input_shape
|
47 |
image = np.asarray(image)
|
48 |
+
image = tf.image.resize(image, size=(height, width), method=tf.image.ResizeMethod.AREA, preserve_aspect_ratio=True)
|
|
|
|
|
|
|
49 |
image = image.numpy()
|
50 |
image = dd.image.transform_and_pad_image(image, width, height)
|
51 |
+
image = image / 255.0
|
52 |
probs = model.predict(image[None, ...])[0]
|
53 |
probs = probs.astype(float)
|
54 |
|
|
|
62 |
if prob < score_threshold:
|
63 |
break
|
64 |
result_threshold[label] = prob
|
65 |
+
result_text = ", ".join(result_all.keys())
|
66 |
return result_threshold, result_all, result_text
|
67 |
|
68 |
|
69 |
image_paths = load_sample_image_paths()
|
70 |
examples = [[path.as_posix(), 0.5] for path in image_paths]
|
71 |
|
72 |
+
with gr.Blocks(css="style.css") as demo:
|
73 |
gr.Markdown(DESCRIPTION)
|
74 |
with gr.Row():
|
75 |
with gr.Column():
|
76 |
+
image = gr.Image(label="Input", type="pil")
|
77 |
+
score_threshold = gr.Slider(label="Score threshold", minimum=0, maximum=1, step=0.05, value=0.5)
|
78 |
+
run_button = gr.Button("Run")
|
|
|
|
|
|
|
|
|
79 |
with gr.Column():
|
80 |
with gr.Tabs():
|
81 |
+
with gr.Tab(label="Output"):
|
82 |
+
result = gr.Label(label="Output", show_label=False)
|
83 |
+
with gr.Tab(label="JSON"):
|
84 |
+
result_json = gr.JSON(label="JSON output", show_label=False)
|
85 |
+
with gr.Tab(label="Text"):
|
86 |
+
result_text = gr.Text(label="Text output", show_label=False, lines=5)
|
87 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
run_button.click(
|
89 |
fn=predict,
|
90 |
inputs=[image, score_threshold],
|
91 |
outputs=[result, result_json, result_text],
|
92 |
+
api_name="predict",
|
93 |
)
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
demo.queue(max_size=20).launch()
|