#!/usr/bin/env python from __future__ import annotations import os import pathlib import tarfile import requests from io import BytesIO import deepdanbooru as dd import gradio as gr import huggingface_hub import numpy as np import PIL.Image import tensorflow as tf DESCRIPTION = "# [KichangKim/DeepDanbooru](https://github.com/KichangKim/DeepDanbooru)" def load_sample_image_paths() -> list[pathlib.Path]: image_dir = pathlib.Path("images") if not image_dir.exists(): path = huggingface_hub.hf_hub_download("public-data/sample-images-TADNE", "images.tar.gz", repo_type="dataset") with tarfile.open(path) as f: f.extractall() return sorted(image_dir.glob("*")) def load_model() -> tf.keras.Model: path = huggingface_hub.hf_hub_download("public-data/DeepDanbooru", "model-resnet_custom_v3.h5") model = tf.keras.models.load_model(path) return model def load_labels() -> list[str]: path = huggingface_hub.hf_hub_download("public-data/DeepDanbooru", "tags.txt") with open(path) as f: labels = [line.strip() for line in f.readlines()] return labels model = load_model() labels = load_labels() def predict(image: PIL.Image.Image, score_threshold: float) -> tuple[dict[str, float], dict[str, float], str]: _, height, width, _ = model.input_shape image = np.asarray(image) image = tf.image.resize(image, size=(height, width), method=tf.image.ResizeMethod.AREA, preserve_aspect_ratio=True) image = image.numpy() image = dd.image.transform_and_pad_image(image, width, height) image = image / 255.0 probs = model.predict(image[None, ...])[0] probs = probs.astype(float) indices = np.argsort(probs)[::-1] result_all = dict() result_threshold = dict() for index in indices: label = labels[index] prob = probs[index] result_all[label] = prob if prob < score_threshold: break result_threshold[label] = prob result_text = ", ".join(result_all.keys()) return result_threshold, result_all, result_text image_paths = load_sample_image_paths() examples = [[path.as_posix(), 0.5] for path in image_paths] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): image = gr.Image(label="Input", type="pil") score_threshold = gr.Slider(label="Score threshold", minimum=0, maximum=1, step=0.05, value=0.5) run_button = gr.Button("Run") with gr.Column(): with gr.Tabs(): with gr.Tab(label="Output"): result = gr.Label(label="Output", show_label=False) with gr.Tab(label="JSON"): result_json = gr.JSON(label="JSON output", show_label=False) with gr.Tab(label="Text"): result_text = gr.Text(label="Text output", show_label=False, lines=5) gr.Examples( examples=examples, inputs=[image, score_threshold], outputs=[result, result_json, result_text], fn=predict, cache_examples=os.getenv("CACHE_EXAMPLES") == "1", ) run_button.click( fn=predict, inputs=[image, score_threshold], outputs=[result, result_json, result_text], api_name="predict", ) if __name__ == "__main__": demo.queue(max_size=20).launch()