sivan22 commited on
Commit
4a49cfa
โ€ข
1 Parent(s): 7b43238

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -14
app.py CHANGED
@@ -1,33 +1,28 @@
1
  import gradio as gr
2
- from transformers import TrOCRProcessor, VisionEncoderDecoderModel
3
  import requests
4
  from PIL import Image
5
 
6
- processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
7
- model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
 
8
 
9
- # load image examples
10
- urls = ['https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg', 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSoolxi9yWGAT5SLZShv8vVd0bz47UWRzQC19fDTeE8GmGv_Rn-PCF1pP1rrUx8kOjA4gg&usqp=CAU',
11
- 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRNYtTuSBpZPV_nkBYPMFwVVD9asZOPgHww4epu9EqWgDmXW--sE2o8og40ZfDGo87j5w&usqp=CAU']
12
- for idx, url in enumerate(urls):
13
- image = Image.open(requests.get(url, stream=True).raw)
14
- image.save(f"image_{idx}.png")
15
 
16
  def process_image(image):
17
  # prepare image
18
- pixel_values = processor(image, return_tensors="pt").pixel_values
19
 
20
  # generate (no beam search)
21
  generated_ids = model.generate(pixel_values)
22
 
23
  # decode
24
- generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
25
 
26
  return generated_text
27
 
28
- title = "Interactive demo: TrOCR"
29
- description = "Demo for Microsoft's TrOCR, an encoder-decoder model consisting of an image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition (OCR) on single-text line images. This particular model is fine-tuned on IAM, a dataset of annotated handwritten images. To use it, simply upload a (single-text line) image or use one of the example images below and click 'submit'. Results will show up in a few seconds."
30
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
31
  examples =[["image_0.png"], ["image_1.png"], ["image_2.png"]]
32
 
33
  #css = """.output_image, .input_image {height: 600px !important}"""
 
1
  import gradio as gr
2
+ from transformers import VisionEncoderDecoderModel, AutoImageProcessor, BertTokenizerFast
3
  import requests
4
  from PIL import Image
5
 
6
+ image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-base-patch4-window7-224")
7
+ tokenizer = tokenizer =BertTokenizerFast.from_pretrained("onlplab/alephbert-base")
8
+ model = VisionEncoderDecoderModel.from_pretrained("sivan22/hdd-words-ocr")
9
 
 
 
 
 
 
 
10
 
11
  def process_image(image):
12
  # prepare image
13
+ pixel_values = image_processor(image, return_tensors="pt").pixel_values
14
 
15
  # generate (no beam search)
16
  generated_ids = model.generate(pixel_values)
17
 
18
  # decode
19
+ generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
20
 
21
  return generated_text
22
 
23
+ title = "ื”ื“ื’ืžื”: ืคืขื ื•ื— ื›ืชื‘ ื™ื“ ื‘ืืžืฆืขื•ืช ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช"
24
+ description = "ืขืœ ื‘ืกื™ืก ืžื•ื“ืœ swin ื‘ืฆื“ ื”ืชืžื•ื ื”, ื•ืžื•ื“ืœ alephbert ื‘ืฆื“ ื”ื˜ืงืกื˜."
25
+ article = "<p style='text-align: center'>sivan22</p>"
26
  examples =[["image_0.png"], ["image_1.png"], ["image_2.png"]]
27
 
28
  #css = """.output_image, .input_image {height: 600px !important}"""