Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import glob | |
import json | |
import os.path | |
import time | |
import gradio as gr | |
import numpy as np | |
import onnxruntime as rt | |
import tqdm | |
from huggingface_hub import hf_hub_download | |
import MIDI | |
from midi_synthesizer import synthesis | |
from midi_tokenizer import MIDITokenizer | |
MAX_SEED = np.iinfo(np.int32).max | |
in_space = os.getenv("SYSTEM") == "spaces" | |
def softmax(x, axis): | |
x_max = np.amax(x, axis=axis, keepdims=True) | |
exp_x_shifted = np.exp(x - x_max) | |
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True) | |
def sample_top_p_k(probs, p, k, generator=None): | |
if generator is None: | |
generator = np.random | |
probs_idx = np.argsort(-probs, axis=-1) | |
probs_sort = np.take_along_axis(probs, probs_idx, -1) | |
probs_sum = np.cumsum(probs_sort, axis=-1) | |
mask = probs_sum - probs_sort > p | |
probs_sort[mask] = 0.0 | |
mask = np.zeros(probs_sort.shape[-1]) | |
mask[:k] = 1 | |
probs_sort = probs_sort * mask | |
probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True) | |
shape = probs_sort.shape | |
probs_sort_flat = probs_sort.reshape(-1, shape[-1]) | |
probs_idx_flat = probs_idx.reshape(-1, shape[-1]) | |
next_token = np.stack([generator.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)]) | |
next_token = next_token.reshape(*shape[:-1]) | |
return next_token | |
def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20, | |
disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None): | |
tokenizer = model[2] | |
if disable_channels is not None: | |
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels] | |
else: | |
disable_channels = [] | |
if generator is None: | |
generator = np.random | |
max_token_seq = tokenizer.max_token_seq | |
if prompt is None: | |
input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64) | |
input_tensor[0, 0] = tokenizer.bos_id # bos | |
else: | |
prompt = prompt[:, :max_token_seq] | |
if prompt.shape[-1] < max_token_seq: | |
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])), | |
mode="constant", constant_values=tokenizer.pad_id) | |
input_tensor = prompt | |
input_tensor = input_tensor[None, :, :] | |
cur_len = input_tensor.shape[1] | |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space) | |
with bar: | |
while cur_len < max_len: | |
end = False | |
hidden = model[0].run(None, {'x': input_tensor})[0][:, -1] | |
next_token_seq = np.empty((1, 0), dtype=np.int64) | |
event_name = "" | |
for i in range(max_token_seq): | |
mask = np.zeros(tokenizer.vocab_size, dtype=np.int64) | |
if i == 0: | |
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id] | |
if disable_patch_change: | |
mask_ids.remove(tokenizer.event_ids["patch_change"]) | |
if disable_control_change: | |
mask_ids.remove(tokenizer.event_ids["control_change"]) | |
mask[mask_ids] = 1 | |
else: | |
param_name = tokenizer.events[event_name][i - 1] | |
mask_ids = tokenizer.parameter_ids[param_name] | |
if param_name == "channel": | |
mask_ids = [i for i in mask_ids if i not in disable_channels] | |
mask[mask_ids] = 1 | |
logits = model[1].run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:] | |
scores = softmax(logits / temp, -1) * mask | |
sample = sample_top_p_k(scores, top_p, top_k, generator) | |
if i == 0: | |
next_token_seq = sample | |
eid = sample.item() | |
if eid == tokenizer.eos_id: | |
end = True | |
break | |
event_name = tokenizer.id_events[eid] | |
else: | |
next_token_seq = np.concatenate([next_token_seq, sample], axis=1) | |
if len(tokenizer.events[event_name]) == i: | |
break | |
if next_token_seq.shape[1] < max_token_seq: | |
next_token_seq = np.pad(next_token_seq, ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])), | |
mode="constant", constant_values=tokenizer.pad_id) | |
next_token_seq = next_token_seq[None, :, :] | |
input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1) | |
cur_len += 1 | |
bar.update(1) | |
yield next_token_seq.reshape(-1) | |
if end: | |
break | |
def create_msg(name, data): | |
return {"name": name, "data": data} | |
def send_msgs(msgs): | |
return json.dumps(msgs) | |
def run(model_name, tab, mid_seq, instruments, drum_kit, bpm, mid, midi_events, | |
reduce_cc_st, remap_track_channel, add_default_instr, remove_empty_channels, seed, seed_rand, | |
gen_events, temp, top_p, top_k, allow_cc): | |
model = models[model_name] | |
tokenizer = model[2] | |
bpm = int(bpm) | |
gen_events = int(gen_events) | |
max_len = gen_events | |
if seed_rand: | |
seed = np.random.randint(0, MAX_SEED) | |
generator = np.random.RandomState(seed) | |
disable_patch_change = False | |
disable_channels = None | |
if tab == 0: | |
i = 0 | |
mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)] | |
if bpm != 0: | |
mid.append(tokenizer.event2tokens(["set_tempo", 0, 0, 0, bpm])) | |
patches = {} | |
if instruments is None: | |
instruments = [] | |
for instr in instruments: | |
patches[i] = patch2number[instr] | |
i = (i + 1) if i != 8 else 10 | |
if drum_kit != "None": | |
patches[9] = drum_kits2number[drum_kit] | |
for i, (c, p) in enumerate(patches.items()): | |
mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i, c, p])) | |
mid_seq = mid | |
mid = np.asarray(mid, dtype=np.int64) | |
if len(instruments) > 0: | |
disable_patch_change = True | |
disable_channels = [i for i in range(16) if i not in patches] | |
elif tab == 1 and mid is not None: | |
eps = 4 if reduce_cc_st else 0 | |
mid = tokenizer.tokenize(MIDI.midi2score(mid), cc_eps=eps, tempo_eps=eps, | |
remap_track_channel=remap_track_channel, | |
add_default_instr=add_default_instr, | |
remove_empty_channels=remove_empty_channels) | |
mid = np.asarray(mid, dtype=np.int64) | |
mid = mid[:int(midi_events)] | |
mid_seq = [] | |
for token_seq in mid: | |
mid_seq.append(token_seq.tolist()) | |
elif tab == 2 and mid_seq is not None: | |
mid = np.asarray(mid_seq, dtype=np.int64) | |
else: | |
mid_seq = [] | |
mid = None | |
if mid is not None: | |
max_len += len(mid) | |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq] | |
if tab == 2: | |
init_msgs = [create_msg("visualizer_continue", tokenizer.version)] | |
else: | |
init_msgs = [create_msg("visualizer_clear", tokenizer.version), | |
create_msg("visualizer_append", events)] | |
yield mid_seq, None, None, seed, send_msgs(init_msgs) | |
t = time.time() + 1 | |
midi_generator = generate(model, mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k, | |
disable_patch_change=disable_patch_change, disable_control_change=not allow_cc, | |
disable_channels=disable_channels, generator=generator) | |
events = [] | |
for i, token_seq in enumerate(midi_generator): | |
token_seq = token_seq.tolist() | |
mid_seq.append(token_seq) | |
events.append(tokenizer.tokens2event(token_seq)) | |
ct = time.time() | |
if ct - t > 0.5: | |
yield mid_seq, None, None, seed, send_msgs( | |
[create_msg("visualizer_append", events), create_msg("progress", [i + 1, gen_events])]) | |
t = ct | |
events = [] | |
mid = tokenizer.detokenize(mid_seq) | |
with open(f"output.mid", 'wb') as f: | |
f.write(MIDI.score2midi(mid)) | |
audio = synthesis(MIDI.score2opus(mid), soundfont_path) | |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq] | |
yield mid_seq, "output.mid", (44100, audio), seed, send_msgs([create_msg("visualizer_end", events)]) | |
def cancel_run(model_name, mid_seq): | |
if mid_seq is None: | |
return None, None, [] | |
tokenizer = models[model_name][2] | |
mid = tokenizer.detokenize(mid_seq) | |
with open(f"output.mid", 'wb') as f: | |
f.write(MIDI.score2midi(mid)) | |
audio = synthesis(MIDI.score2opus(mid), soundfont_path) | |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq] | |
return "output.mid", (44100, audio), send_msgs([create_msg("visualizer_end", events)]) | |
def load_javascript(dir="javascript"): | |
scripts_list = glob.glob(f"{dir}/*.js") | |
javascript = "" | |
for path in scripts_list: | |
with open(path, "r", encoding="utf8") as jsfile: | |
javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>" | |
template_response_ori = gr.routes.templates.TemplateResponse | |
def template_response(*args, **kwargs): | |
res = template_response_ori(*args, **kwargs) | |
res.body = res.body.replace( | |
b'</head>', f'{javascript}</head>'.encode("utf8")) | |
res.init_headers() | |
return res | |
gr.routes.templates.TemplateResponse = template_response | |
def hf_hub_download_retry(repo_id, filename): | |
print(f"downloading {repo_id} {filename}") | |
retry = 0 | |
err = None | |
while retry < 30: | |
try: | |
return hf_hub_download(repo_id=repo_id, filename=filename) | |
except Exception as e: | |
err = e | |
retry += 1 | |
if err: | |
raise err | |
def get_tokenizer(config_name): | |
tv, size = config_name.split("-") | |
tv = tv[1:] | |
if tv[-1] == "o": | |
o = True | |
tv = tv[:-1] | |
else: | |
o = False | |
if tv not in ["v1", "v2"]: | |
raise ValueError(f"Unknown tokenizer version {tv}") | |
tokenizer = MIDITokenizer(tv) | |
tokenizer.set_optimise_midi(o) | |
return tokenizer | |
number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz", | |
40: "Blush", 48: "Orchestra"} | |
patch2number = {v: k for k, v in MIDI.Number2patch.items()} | |
drum_kits2number = {v: k for k, v in number2drum_kits.items()} | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
parser.add_argument("--port", type=int, default=7860, help="gradio server port") | |
parser.add_argument("--max-gen", type=int, default=1024, help="max") | |
opt = parser.parse_args() | |
soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2") | |
models_info = {"generic pretrain model (tv2o-large) by asigalov61": ["asigalov61/Music-Llama", "", "tv2o-large"], | |
"generic pretrain model (tv2o-medium) by asigalov61": ["asigalov61/Music-Llama-Medium", "", "tv2o-medium"], | |
"generic pretrain model (tv1-medium) by skytnt": ["skytnt/midi-model", "", "tv1-medium"], | |
"j-pop finetune model (tv1-medium) by skytnt": ["skytnt/midi-model-ft", "jpop/", "tv1-medium"], | |
"touhou finetune model (tv1-medium) by skytnt": ["skytnt/midi-model-ft", "touhou/", "tv1-medium"], | |
} | |
models = {} | |
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] | |
for name, (repo_id, path, config) in models_info.items(): | |
model_base_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_base.onnx") | |
model_token_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_token.onnx") | |
model_base = rt.InferenceSession(model_base_path, providers=providers) | |
model_token = rt.InferenceSession(model_token_path, providers=providers) | |
tokenizer = get_tokenizer(config) | |
models[name] = [model_base, model_token, tokenizer] | |
load_javascript() | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>") | |
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=skytnt.midi-composer&style=flat)\n\n" | |
"Midi event transformer for music generation\n\n" | |
"Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n" | |
"[Open In Colab]" | |
"(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)" | |
" for faster running and longer generation\n\n" | |
"**Update v1.2**: Optimise the tokenizer and dataset" | |
) | |
js_msg = gr.Textbox(elem_id="msg_receiver", visible=False) | |
js_msg.change(None, [js_msg], [], js=""" | |
(msg_json) =>{ | |
let msgs = JSON.parse(msg_json); | |
executeCallbacks(msgReceiveCallbacks, msgs); | |
return []; | |
} | |
""") | |
input_model = gr.Dropdown(label="select model", choices=list(models.keys()), | |
type="value", value=list(models.keys())[0]) | |
tab_select = gr.State(value=0) | |
with gr.Tabs(): | |
with gr.TabItem("instrument prompt") as tab1: | |
input_instruments = gr.Dropdown(label="🪗instruments (auto if empty)", choices=list(patch2number.keys()), | |
multiselect=True, max_choices=15, type="value") | |
input_drum_kit = gr.Dropdown(label="🥁drum kit", choices=list(drum_kits2number.keys()), type="value", | |
value="None") | |
input_bpm = gr.Slider(label="BPM (beats per minute, auto if 0)", minimum=0, maximum=255, | |
step=1, | |
value=0) | |
example1 = gr.Examples([ | |
[[], "None"], | |
[["Acoustic Grand"], "None"], | |
[['Acoustic Grand', 'SynthStrings 2', 'SynthStrings 1', 'Pizzicato Strings', | |
'Pad 2 (warm)', 'Tremolo Strings', 'String Ensemble 1'], "Orchestra"], | |
[['Trumpet', 'Oboe', 'Trombone', 'String Ensemble 1', 'Clarinet', | |
'French Horn', 'Pad 4 (choir)', 'Bassoon', 'Flute'], "None"], | |
[['Flute', 'French Horn', 'Clarinet', 'String Ensemble 2', 'English Horn', 'Bassoon', | |
'Oboe', 'Pizzicato Strings'], "Orchestra"], | |
[['Electric Piano 2', 'Lead 5 (charang)', 'Electric Bass(pick)', 'Lead 2 (sawtooth)', | |
'Pad 1 (new age)', 'Orchestra Hit', 'Cello', 'Electric Guitar(clean)'], "Standard"], | |
[["Electric Guitar(clean)", "Electric Guitar(muted)", "Overdriven Guitar", "Distortion Guitar", | |
"Electric Bass(finger)"], "Standard"] | |
], [input_instruments, input_drum_kit]) | |
with gr.TabItem("midi prompt") as tab2: | |
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary") | |
input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512, | |
step=1, | |
value=128) | |
input_reduce_cc_st = gr.Checkbox(label="reduce control_change and set_tempo events", value=True) | |
input_remap_track_channel = gr.Checkbox( | |
label="remap tracks and channels so each track has only one channel and in order", value=True) | |
input_add_default_instr = gr.Checkbox( | |
label="add a default instrument to channels that don't have an instrument", value=True) | |
input_remove_empty_channels = gr.Checkbox(label="remove channels without notes", value=False) | |
example2 = gr.Examples([[file, 128] for file in glob.glob("example/*.mid")], | |
[input_midi, input_midi_events]) | |
with gr.TabItem("last output prompt") as tab3: | |
gr.Markdown("Continue generating on the last output. Just click the generate button") | |
tab1.select(lambda: 0, None, tab_select, queue=False) | |
tab2.select(lambda: 1, None, tab_select, queue=False) | |
tab3.select(lambda: 2, None, tab_select, queue=False) | |
input_seed = gr.Slider(label="seed", minimum=0, maximum=2 ** 31 - 1, | |
step=1, value=0) | |
input_seed_rand = gr.Checkbox(label="random seed", value=True) | |
input_gen_events = gr.Slider(label="generate max n midi events", minimum=1, maximum=opt.max_gen, | |
step=1, value=opt.max_gen // 2) | |
with gr.Accordion("options", open=False): | |
input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1) | |
input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.98) | |
input_top_k = gr.Slider(label="top k", minimum=1, maximum=128, step=1, value=10) | |
input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True) | |
example3 = gr.Examples([[1, 0.98, 20], [1, 0.98, 12]], [input_temp, input_top_p, input_top_k]) | |
run_btn = gr.Button("generate", variant="primary") | |
stop_btn = gr.Button("stop and output") | |
output_midi_seq = gr.State() | |
output_midi_visualizer = gr.HTML(elem_id="midi_visualizer_container") | |
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio") | |
output_midi = gr.File(label="output midi", file_types=[".mid"]) | |
run_event = run_btn.click(run, [input_model, tab_select, output_midi_seq, input_instruments, | |
input_drum_kit, input_bpm, input_midi, input_midi_events, input_reduce_cc_st, | |
input_remap_track_channel, input_add_default_instr, input_remove_empty_channels, | |
input_seed, input_seed_rand, input_gen_events, input_temp, input_top_p, | |
input_top_k, input_allow_cc], | |
[output_midi_seq, output_midi, output_audio, input_seed, js_msg], | |
concurrency_limit=3) | |
stop_btn.click(cancel_run, [input_model, output_midi_seq], | |
[output_midi, output_audio, js_msg], | |
cancels=run_event, queue=False) | |
app.launch(server_port=opt.port, share=opt.share, inbrowser=True) | |