File size: 7,179 Bytes
3561130
83bf04f
 
dde297c
c2546a5
 
83bf04f
c2546a5
 
 
 
 
 
 
 
7dce1b0
 
c2546a5
8935672
c2546a5
 
 
 
 
 
 
3561130
7f6e9a8
7dce1b0
3561130
 
 
 
 
 
 
7f6e9a8
 
7dce1b0
3561130
 
 
 
 
 
 
 
 
 
 
7dce1b0
3561130
 
 
 
 
 
 
 
 
 
7dce1b0
 
 
 
 
 
 
 
3561130
 
7dce1b0
3561130
 
 
c2546a5
 
83bf04f
 
 
 
 
 
 
c2546a5
8935672
3561130
 
 
8935672
 
3561130
8935672
 
 
 
 
 
 
 
 
3561130
 
 
 
 
c2546a5
 
 
 
 
 
3561130
 
 
c2546a5
 
 
3561130
7dce1b0
3561130
 
7dce1b0
3561130
 
 
 
7f6e9a8
3561130
 
 
7f6e9a8
 
c2546a5
3561130
7dce1b0
3561130
7dce1b0
3561130
 
 
 
 
7dce1b0
3561130
 
 
 
c2546a5
83bf04f
7dce1b0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import json
from signal import SIGTERM

import librosa
import numpy as np
import torch
from psutil import process_iter
from torch import no_grad, LongTensor
import commons
import utils
import gradio as gr
from models import SynthesizerTrn
from text import text_to_sequence
from mel_processing import spectrogram_torch

limitation = True  # limit text and audio length


def get_text(text, hps):
    text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
    if hps.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = LongTensor(text_norm)
    return text_norm


def create_tts_fn(model, hps, speaker_ids):
    def tts_fn(text, speaker, speed):
        if limitation and len(text) > 150:
            return "Error: Text is too long", None
        speaker_id = speaker_ids[speaker]
        stn_tst = get_text(text, hps)
        with no_grad():
            x_tst = stn_tst.unsqueeze(0)
            x_tst_lengths = LongTensor([stn_tst.size(0)])
            sid = LongTensor([speaker_id])
            audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
                                length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
        del stn_tst, x_tst, x_tst_lengths, sid
        return "Success", (hps.data.sampling_rate, audio)

    return tts_fn


def create_vc_fn(model, hps, speaker_ids):
    def vc_fn(original_speaker, target_speaker, input_audio):
        if input_audio is None:
            return "You need to upload an audio", None
        sampling_rate, audio = input_audio
        duration = audio.shape[0] / sampling_rate
        if limitation and duration > 20:
            return "Error: Audio is too long", None
        original_speaker_id = speaker_ids[original_speaker]
        target_speaker_id = speaker_ids[target_speaker]

        audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
        if len(audio.shape) > 1:
            audio = librosa.to_mono(audio.transpose(1, 0))
        if sampling_rate != hps.data.sampling_rate:
            audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
        with no_grad():
            y = torch.FloatTensor(audio)
            y = y.unsqueeze(0)
            spec = spectrogram_torch(y, hps.data.filter_length,
                                     hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
                                     center=False)
            spec_lengths = LongTensor([spec.size(-1)])
            sid_src = LongTensor([original_speaker_id])
            sid_tgt = LongTensor([target_speaker_id])
            audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
                0, 0].data.cpu().float().numpy()
        del y, spec, spec_lengths, sid_src, sid_tgt
        return "Success", (hps.data.sampling_rate, audio)

    return vc_fn


def kill_proc():
    for proc in process_iter():
        for conns in proc.connections(kind='inet'):
            if conns.laddr.port == 7860:
                proc.send_signal(SIGTERM)


if __name__ == '__main__':
    models = []
    with open("saved_model/names.json", "r", encoding="utf-8") as f:
        models_names = json.load(f)
    for i, models_name in models_names.items():
        config_path = f"saved_model/{i}/config.json"
        model_path = f"saved_model/{i}/model.pth"
        cover_path = f"saved_model/{i}/cover.jpg"
        hps = utils.get_hparams_from_file(config_path)
        model = SynthesizerTrn(
            len(hps.symbols),
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model)
        utils.load_checkpoint(model_path, model, None)
        model.eval()
        speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"]
        speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]

        models.append((models_name, cover_path, speakers,
                       create_tts_fn(model, hps, speaker_ids), create_vc_fn(model, hps, speaker_ids)))

    app = gr.Blocks()

    with app:
        gr.Markdown("# Moe Japanese TTS And Voice Conversion Using VITS Model\n\n"
                    "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.moegoe)\n\n"
                    "unofficial demo for \n\n"
                    "- [https://github.com/CjangCjengh/MoeGoe](https://github.com/CjangCjengh/MoeGoe)\n"
                    "- [https://github.com/Francis-Komizu/VITS](https://github.com/Francis-Komizu/VITS)"
                    )
        with gr.Tabs():
            with gr.TabItem("TTS"):
                with gr.Tabs():
                    for i, (model_name, cover_path, speakers, tts_fn, vc_fn) in enumerate(models):
                        with gr.TabItem(f"model{i}"):
                            with gr.Column():
                                gr.Markdown(f"## {model_name}\n\n"
                                            f"![cover](file/{cover_path})")
                                tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="こんにけは。")
                                tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
                                                         type="index", value=speakers[0])
                                tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.5, maximum=2, step=0.1)
                                tts_submit = gr.Button("Generate", variant="primary")
                                tts_output1 = gr.Textbox(label="Output Message")
                                tts_output2 = gr.Audio(label="Output Audio")
                                tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3],
                                                 [tts_output1, tts_output2])
            with gr.TabItem("Voice Conversion"):
                with gr.Tabs():
                    for i, (model_name, cover_path, speakers, tts_fn, vc_fn) in enumerate(models):
                        with gr.TabItem(f"model{i}"):
                            gr.Markdown(f"## {model_name}\n\n"
                                        f"![cover](file/{cover_path})")
                            vc_input1 = gr.Dropdown(label="Original Speaker", choices=speakers, type="index",
                                                    value=speakers[0])
                            vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
                                                    value=speakers[1])
                            vc_input3 = gr.Audio(label="Input Audio (20s limitation)")
                            vc_submit = gr.Button("Convert", variant="primary")
                            vc_output1 = gr.Textbox(label="Output Message")
                            vc_output2 = gr.Audio(label="Output Audio")
                            vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])

    kill_proc()
    # app.launch()
    app.queue(client_position_to_load_data=10).launch()