Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,179 Bytes
3561130 83bf04f dde297c c2546a5 83bf04f c2546a5 7dce1b0 c2546a5 8935672 c2546a5 3561130 7f6e9a8 7dce1b0 3561130 7f6e9a8 7dce1b0 3561130 7dce1b0 3561130 7dce1b0 3561130 7dce1b0 3561130 c2546a5 83bf04f c2546a5 8935672 3561130 8935672 3561130 8935672 3561130 c2546a5 3561130 c2546a5 3561130 7dce1b0 3561130 7dce1b0 3561130 7f6e9a8 3561130 7f6e9a8 c2546a5 3561130 7dce1b0 3561130 7dce1b0 3561130 7dce1b0 3561130 c2546a5 83bf04f 7dce1b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import json
from signal import SIGTERM
import librosa
import numpy as np
import torch
from psutil import process_iter
from torch import no_grad, LongTensor
import commons
import utils
import gradio as gr
from models import SynthesizerTrn
from text import text_to_sequence
from mel_processing import spectrogram_torch
limitation = True # limit text and audio length
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm
def create_tts_fn(model, hps, speaker_ids):
def tts_fn(text, speaker, speed):
if limitation and len(text) > 150:
return "Error: Text is too long", None
speaker_id = speaker_ids[speaker]
stn_tst = get_text(text, hps)
with no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = LongTensor([stn_tst.size(0)])
sid = LongTensor([speaker_id])
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
del stn_tst, x_tst, x_tst_lengths, sid
return "Success", (hps.data.sampling_rate, audio)
return tts_fn
def create_vc_fn(model, hps, speaker_ids):
def vc_fn(original_speaker, target_speaker, input_audio):
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = input_audio
duration = audio.shape[0] / sampling_rate
if limitation and duration > 20:
return "Error: Audio is too long", None
original_speaker_id = speaker_ids[original_speaker]
target_speaker_id = speaker_ids[target_speaker]
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != hps.data.sampling_rate:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
with no_grad():
y = torch.FloatTensor(audio)
y = y.unsqueeze(0)
spec = spectrogram_torch(y, hps.data.filter_length,
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
center=False)
spec_lengths = LongTensor([spec.size(-1)])
sid_src = LongTensor([original_speaker_id])
sid_tgt = LongTensor([target_speaker_id])
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
0, 0].data.cpu().float().numpy()
del y, spec, spec_lengths, sid_src, sid_tgt
return "Success", (hps.data.sampling_rate, audio)
return vc_fn
def kill_proc():
for proc in process_iter():
for conns in proc.connections(kind='inet'):
if conns.laddr.port == 7860:
proc.send_signal(SIGTERM)
if __name__ == '__main__':
models = []
with open("saved_model/names.json", "r", encoding="utf-8") as f:
models_names = json.load(f)
for i, models_name in models_names.items():
config_path = f"saved_model/{i}/config.json"
model_path = f"saved_model/{i}/model.pth"
cover_path = f"saved_model/{i}/cover.jpg"
hps = utils.get_hparams_from_file(config_path)
model = SynthesizerTrn(
len(hps.symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
utils.load_checkpoint(model_path, model, None)
model.eval()
speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"]
speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]
models.append((models_name, cover_path, speakers,
create_tts_fn(model, hps, speaker_ids), create_vc_fn(model, hps, speaker_ids)))
app = gr.Blocks()
with app:
gr.Markdown("# Moe Japanese TTS And Voice Conversion Using VITS Model\n\n"
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.moegoe)\n\n"
"unofficial demo for \n\n"
"- [https://github.com/CjangCjengh/MoeGoe](https://github.com/CjangCjengh/MoeGoe)\n"
"- [https://github.com/Francis-Komizu/VITS](https://github.com/Francis-Komizu/VITS)"
)
with gr.Tabs():
with gr.TabItem("TTS"):
with gr.Tabs():
for i, (model_name, cover_path, speakers, tts_fn, vc_fn) in enumerate(models):
with gr.TabItem(f"model{i}"):
with gr.Column():
gr.Markdown(f"## {model_name}\n\n"
f"![cover](file/{cover_path})")
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="γγγ«γ‘γ―γ")
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
type="index", value=speakers[0])
tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.5, maximum=2, step=0.1)
tts_submit = gr.Button("Generate", variant="primary")
tts_output1 = gr.Textbox(label="Output Message")
tts_output2 = gr.Audio(label="Output Audio")
tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3],
[tts_output1, tts_output2])
with gr.TabItem("Voice Conversion"):
with gr.Tabs():
for i, (model_name, cover_path, speakers, tts_fn, vc_fn) in enumerate(models):
with gr.TabItem(f"model{i}"):
gr.Markdown(f"## {model_name}\n\n"
f"![cover](file/{cover_path})")
vc_input1 = gr.Dropdown(label="Original Speaker", choices=speakers, type="index",
value=speakers[0])
vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
value=speakers[1])
vc_input3 = gr.Audio(label="Input Audio (20s limitation)")
vc_submit = gr.Button("Convert", variant="primary")
vc_output1 = gr.Textbox(label="Output Message")
vc_output2 = gr.Audio(label="Output Audio")
vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])
kill_proc()
# app.launch()
app.queue(client_position_to_load_data=10).launch()
|