File size: 8,928 Bytes
3561130
f60cca2
dde297c
c2546a5
 
 
 
 
 
 
f60cca2
c2546a5
 
f60cca2
7dce1b0
c2546a5
f60cca2
 
c2546a5
 
 
 
 
 
3561130
f60cca2
 
3561130
 
f60cca2
3561130
 
 
 
7f6e9a8
 
7dce1b0
3561130
 
 
 
 
 
 
 
 
 
 
ed10f4a
3561130
 
 
 
 
 
 
 
 
 
7dce1b0
 
 
 
 
 
 
 
3561130
 
7dce1b0
3561130
 
 
c2546a5
 
f60cca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2546a5
8935672
3561130
 
 
8935672
 
3561130
8935672
 
 
 
 
 
 
 
 
3561130
 
 
f60cca2
3561130
c2546a5
f60cca2
c2546a5
 
 
 
3561130
 
 
c2546a5
 
 
3561130
f60cca2
3561130
 
7dce1b0
3561130
3b8c740
3561130
 
7f6e9a8
f60cca2
 
 
 
 
 
 
 
3561130
 
 
f60cca2
 
 
 
 
 
 
7f6e9a8
f60cca2
 
 
c2546a5
3561130
f60cca2
3561130
7dce1b0
3561130
 
 
 
 
ed10f4a
3561130
 
 
 
f60cca2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import json
import os
import librosa
import numpy as np
import torch
from torch import no_grad, LongTensor
import commons
import utils
import gradio as gr
from models import SynthesizerTrn
from text import text_to_sequence, _clean_text
from mel_processing import spectrogram_torch

limitation = os.getenv("SYSTEM") == "spaces"  # limit text and audio length in huggingface spaces


def get_text(text, hps, is_phoneme):
    text_norm = text_to_sequence(text, hps.symbols, [] if is_phoneme else hps.data.text_cleaners)
    if hps.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = LongTensor(text_norm)
    return text_norm


def create_tts_fn(model, hps, speaker_ids):
    def tts_fn(text, speaker, speed, is_phoneme):
        if limitation and ((len(text) > 60 and not is_phoneme) or (len(text) > 120 and is_phoneme)):
            return "Error: Text is too long", None
        speaker_id = speaker_ids[speaker]
        stn_tst = get_text(text, hps, is_phoneme)
        with no_grad():
            x_tst = stn_tst.unsqueeze(0)
            x_tst_lengths = LongTensor([stn_tst.size(0)])
            sid = LongTensor([speaker_id])
            audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
                                length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
        del stn_tst, x_tst, x_tst_lengths, sid
        return "Success", (hps.data.sampling_rate, audio)

    return tts_fn


def create_vc_fn(model, hps, speaker_ids):
    def vc_fn(original_speaker, target_speaker, input_audio):
        if input_audio is None:
            return "You need to upload an audio", None
        sampling_rate, audio = input_audio
        duration = audio.shape[0] / sampling_rate
        if limitation and duration > 15:
            return "Error: Audio is too long", None
        original_speaker_id = speaker_ids[original_speaker]
        target_speaker_id = speaker_ids[target_speaker]

        audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
        if len(audio.shape) > 1:
            audio = librosa.to_mono(audio.transpose(1, 0))
        if sampling_rate != hps.data.sampling_rate:
            audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
        with no_grad():
            y = torch.FloatTensor(audio)
            y = y.unsqueeze(0)
            spec = spectrogram_torch(y, hps.data.filter_length,
                                     hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
                                     center=False)
            spec_lengths = LongTensor([spec.size(-1)])
            sid_src = LongTensor([original_speaker_id])
            sid_tgt = LongTensor([target_speaker_id])
            audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
                0, 0].data.cpu().float().numpy()
        del y, spec, spec_lengths, sid_src, sid_tgt
        return "Success", (hps.data.sampling_rate, audio)

    return vc_fn


css = """
        #advanced-btn {
            color: white;
            border-color: black;
            background: black;
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 24px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
"""

if __name__ == '__main__':
    models = []
    with open("saved_model/names.json", "r", encoding="utf-8") as f:
        models_names = json.load(f)
    for i, models_name in models_names.items():
        config_path = f"saved_model/{i}/config.json"
        model_path = f"saved_model/{i}/model.pth"
        cover_path = f"saved_model/{i}/cover.jpg"
        hps = utils.get_hparams_from_file(config_path)
        model = SynthesizerTrn(
            len(hps.symbols),
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model)
        utils.load_checkpoint(model_path, model, None)
        model.eval()
        speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"]
        speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]

        models.append((models_name, cover_path, speakers, hps.symbols,
                       create_tts_fn(model, hps, speaker_ids), create_vc_fn(model, hps, speaker_ids)))

    app = gr.Blocks(css=css)

    with app:
        gr.Markdown("# Moe Japanese TTS And Voice Conversion Using VITS Model\n\n"
                    "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.moegoe)\n\n"
                    "unofficial demo for \n\n"
                    "- [https://github.com/CjangCjengh/MoeGoe](https://github.com/CjangCjengh/MoeGoe)\n"
                    "- [https://github.com/Francis-Komizu/VITS](https://github.com/Francis-Komizu/VITS)"
                    )
        with gr.Tabs():
            with gr.TabItem("TTS"):
                with gr.Tabs():
                    for i, (model_name, cover_path, speakers, symbols, tts_fn, vc_fn) in enumerate(models):
                        with gr.TabItem(f"model{i}"):
                            with gr.Column():
                                gr.Markdown(f"## {model_name}\n\n"
                                            f"![cover](file/{cover_path})")
                                tts_input1 = gr.TextArea(label="Text (60 words limitation)", value="こんにけは。")
                                tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
                                                         type="index", value=speakers[0])
                                tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.5, maximum=2, step=0.1)
                                advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
                                advanced_options = gr.Column()
                                advanced_options.elem_id = "advanced-options"
                                with advanced_options:
                                    phoneme_input = gr.Checkbox(value=False, label="Phoneme input")
                                    to_phoneme_btn = gr.Button("Covert text to phoneme")
                                    phoneme_list = gr.Json(label="Phoneme list", value=symbols, elem_id="phoneme_list")

                                tts_submit = gr.Button("Generate", variant="primary")
                                tts_output1 = gr.Textbox(label="Output Message")
                                tts_output2 = gr.Audio(label="Output Audio")
                                advanced_button.click(None, [], [],
                                                      _js="""
                                                        () => {
                                                            const options = document.querySelector("body > gradio-app").shadowRoot.querySelector("#advanced-options");
                                                            options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
                                                        }""")
                                tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3, phoneme_input],
                                                 [tts_output1, tts_output2])
                                to_phoneme_btn.click(lambda x: _clean_text(x, hps.data.text_cleaners) if x != "" else x,
                                                     [tts_input1], [tts_input1])

            with gr.TabItem("Voice Conversion"):
                with gr.Tabs():
                    for i, (model_name, cover_path, speakers, symbols, tts_fn, vc_fn) in enumerate(models):
                        with gr.TabItem(f"model{i}"):
                            gr.Markdown(f"## {model_name}\n\n"
                                        f"![cover](file/{cover_path})")
                            vc_input1 = gr.Dropdown(label="Original Speaker", choices=speakers, type="index",
                                                    value=speakers[0])
                            vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
                                                    value=speakers[1])
                            vc_input3 = gr.Audio(label="Input Audio (15s limitation)")
                            vc_submit = gr.Button("Convert", variant="primary")
                            vc_output1 = gr.Textbox(label="Output Message")
                            vc_output2 = gr.Audio(label="Output Audio")
                            vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])
    app.launch()