Spaces:
Running
Running
import numpy as np | |
from tensorflow.keras.models import load_model | |
import joblib | |
class RTUAnomalizer2: | |
""" | |
Class for performing anomaly detection on RTU (Roof Top Unit) data. | |
""" | |
def __init__( | |
self, | |
prediction_model_path=None, | |
clustering_model_paths=None, | |
pca_model_paths=None, | |
num_inputs=None, | |
num_outputs=None, | |
): | |
""" | |
Initialize the RTUAnomalizer object. | |
Args: | |
prediction_model_path (str): Path to the prediction model file. | |
clustering_model_paths (list): List of paths to the clustering model files. | |
num_inputs (int): Number of input features. | |
num_outputs (int): Number of output features. | |
""" | |
self.model = None | |
self.kmeans_models = [] | |
self.pca_models = [] | |
self.num_inputs = num_inputs | |
self.num_outputs = num_outputs | |
if ( | |
prediction_model_path is not None | |
and clustering_model_paths is not None | |
and pca_model_paths is not None | |
): | |
self.load_models( | |
prediction_model_path, clustering_model_paths, pca_model_paths | |
) | |
( | |
self.actual_list, | |
self.pred_list, | |
self.resid_list, | |
self.resid_pca_list, | |
self.distance_list, | |
) = self.initialize_lists() | |
self.fault_1 = 0 | |
self.fault_2 = 0 | |
def initialize_lists(self, size=30): | |
""" | |
Initialize lists for storing actual, predicted, and residual values. | |
Args: | |
size (int): Size of the lists. | |
Returns: | |
tuple: A tuple containing three lists initialized with zeros. | |
""" | |
initial_values = [[0] * self.num_outputs] * size | |
initial_values1 = [[0] * 4] * size | |
initial_values2 = [[0] * 2] * size * 2 | |
return ( | |
initial_values.copy(), | |
initial_values.copy(), | |
initial_values.copy(), | |
initial_values1.copy(), | |
initial_values2.copy(), | |
) | |
def load_models( | |
self, prediction_model_path, clustering_model_paths, pca_model_paths | |
): | |
""" | |
Load the prediction and clustering models. | |
Args: | |
prediction_model_path (str): Path to the prediction model file. | |
clustering_model_paths (list): List of paths to the clustering model files. | |
""" | |
self.model = load_model(prediction_model_path) | |
for path in clustering_model_paths: | |
self.kmeans_models.append(joblib.load(path)) | |
for path in pca_model_paths: | |
self.pca_models.append(joblib.load(path)) | |
def predict(self, df_new): | |
""" | |
Make predictions using the prediction model. | |
Args: | |
df_new (DataFrame): Input data for prediction. | |
Returns: | |
array: Predicted values. | |
""" | |
return self.model.predict(df_new, verbose=0) | |
def calculate_residuals(self, df_trans, pred): | |
""" | |
Calculate the residuals between actual and predicted values. | |
Args: | |
df_trans (DataFrame): Transformed input data. | |
pred (array): Predicted values. | |
Returns: | |
tuple: A tuple containing the actual values and residuals. | |
""" | |
actual = df_trans[30, : self.num_outputs] | |
resid = actual - pred | |
return actual, resid | |
def resize_prediction(self, pred, df_trans): | |
""" | |
Resize the predicted values to match the shape of the transformed input data. | |
Args: | |
pred (array): Predicted values. | |
df_trans (DataFrame): Transformed input data. | |
Returns: | |
array: Resized predicted values. | |
""" | |
pred = np.resize( | |
pred, (pred.shape[0], pred.shape[1] + len(df_trans[30, self.num_outputs :])) | |
) | |
pred[:, -len(df_trans[30, self.num_outputs :]) :] = df_trans[ | |
30, self.num_outputs : | |
] | |
return pred | |
def inverse_transform(self, scaler, pred, df_trans): | |
""" | |
Inverse transform the predicted and actual values. | |
Args: | |
scaler (object): Scaler object for inverse transformation. | |
pred (array): Predicted values. | |
df_trans (DataFrame): Transformed input data. | |
Returns: | |
tuple: A tuple containing the actual and predicted values after inverse transformation. | |
""" | |
pred = scaler.inverse_transform(np.array(pred)) | |
actual = scaler.inverse_transform(np.array([df_trans[30, :]])) | |
return actual, pred | |
def update_lists(self, actual, pred, resid): | |
""" | |
Update the lists of actual, predicted, and residual values. | |
Args: | |
actual_list (list): List of actual values. | |
pred_list (list): List of predicted values. | |
resid_list (list): List of residual values. | |
actual (array): Actual values. | |
pred (array): Predicted values. | |
resid (array): Residual values. | |
Returns: | |
tuple: A tuple containing the updated lists of actual, predicted, and residual values. | |
""" | |
self.actual_list.pop(0) | |
self.pred_list.pop(0) | |
self.resid_list.pop(0) | |
self.actual_list.append(actual.flatten().tolist()) | |
self.pred_list.append(pred.flatten().tolist()) | |
self.resid_list.append(resid.flatten().tolist()) | |
return self.actual_list, self.pred_list, self.resid_list | |
def calculate_distances(self, resid): | |
""" | |
Calculate the distances between residuals and cluster centers. | |
Args: | |
resid (array): Residual values. | |
Returns: | |
array: Array of distances. | |
""" | |
dist = [] | |
resid_pcas = [] | |
for i, model in enumerate(self.kmeans_models): | |
resid_pca = self.pca_models[i].transform( | |
resid[:, (i * 7) + 1 : (i * 7) + 8] | |
) | |
resid_pcas = resid_pcas + resid_pca.tolist() | |
dist.append( | |
np.linalg.norm( | |
resid_pca - model.cluster_centers_[0], | |
ord=2, | |
axis=1, | |
) | |
) | |
self.distance_list.pop(0) | |
self.distance_list.append(np.concatenate(dist).tolist()) | |
resid_pcas = np.array(resid_pcas).flatten().tolist() | |
self.resid_pca_list.pop(0) | |
self.resid_pca_list.append(resid_pcas) | |
return np.array(dist) | |
def fault_windowing(self): | |
rtu_1_dist = np.array(self.distance_list).T[0] > 1.5 # rtu_3_threshold | |
rtu_1_dist = [int(x) for x in rtu_1_dist] | |
if sum(rtu_1_dist) > 0.8 * 60: # 80% of the 60 min window | |
self.fault_1 = 1 | |
else: | |
self.fault_1 = 0 | |
rtu_2_dist = np.array(self.distance_list).T[1] > 1 # rtu_4_threshold | |
rtu_2_dist = [int(x) for x in rtu_2_dist] | |
if sum(rtu_2_dist) > 0.8 * 60: # 80% of the 60 min window | |
self.fault_2 = 1 | |
else: | |
self.fault_2 = 0 | |
def pipeline(self, df_new, df_trans, scaler): | |
""" | |
Perform the anomaly detection pipeline. | |
Args: | |
df_new (DataFrame): Input data for prediction. | |
df_trans (DataFrame): Transformed input data. | |
scaler (object): Scaler object for inverse transformation. | |
Returns: | |
tuple: A tuple containing the lists of actual, predicted, and residual values, and the distances. | |
""" | |
pred = self.predict(df_new) | |
actual, resid = self.calculate_residuals(df_trans, pred) | |
pred = self.resize_prediction(pred, df_trans) | |
actual, pred = self.inverse_transform(scaler, pred, df_trans) | |
actual_list, pred_list, resid_list = self.update_lists(actual, pred, resid) | |
dist = self.calculate_distances(resid) | |
self.fault_windowing() | |
return ( | |
actual_list, | |
pred_list, | |
resid_list, | |
self.resid_pca_list, | |
dist, | |
np.array(self.distance_list[30:]).T[0] > 1.5, # rtu_3_threshold | |
np.array(self.distance_list[30:]).T[1] > 1, # rtu_4_threshold | |
self.fault_1, | |
self.fault_2, | |
) | |