Spaces:
Sleeping
Sleeping
jerin
commited on
Commit
β’
81c7365
1
Parent(s):
830ab0c
add new lstm workbook
Browse files- lstm.ipynb +1310 -0
lstm.ipynb
ADDED
@@ -0,0 +1,1310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd \n",
|
10 |
+
"from datetime import datetime \n",
|
11 |
+
"from datetime import date\n",
|
12 |
+
"import matplotlib.pyplot as plt\n",
|
13 |
+
"import seaborn as sns\n",
|
14 |
+
"import numpy as np\n",
|
15 |
+
"import pandas as pd\n",
|
16 |
+
"from keras.models import Sequential\n",
|
17 |
+
"from keras.layers import LSTM, Dense\n",
|
18 |
+
"from sklearn.model_selection import train_test_split\n",
|
19 |
+
"from sklearn.preprocessing import MinMaxScaler\n",
|
20 |
+
"from keras.callbacks import ModelCheckpoint\n"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 2,
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"data": {
|
30 |
+
"text/html": [
|
31 |
+
"<div>\n",
|
32 |
+
"<style scoped>\n",
|
33 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
34 |
+
" vertical-align: middle;\n",
|
35 |
+
" }\n",
|
36 |
+
"\n",
|
37 |
+
" .dataframe tbody tr th {\n",
|
38 |
+
" vertical-align: top;\n",
|
39 |
+
" }\n",
|
40 |
+
"\n",
|
41 |
+
" .dataframe thead th {\n",
|
42 |
+
" text-align: right;\n",
|
43 |
+
" }\n",
|
44 |
+
"</style>\n",
|
45 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
46 |
+
" <thead>\n",
|
47 |
+
" <tr style=\"text-align: right;\">\n",
|
48 |
+
" <th></th>\n",
|
49 |
+
" <th>date</th>\n",
|
50 |
+
" <th>zone_047_hw_valve</th>\n",
|
51 |
+
" <th>rtu_004_sat_sp_tn</th>\n",
|
52 |
+
" <th>zone_047_temp</th>\n",
|
53 |
+
" <th>zone_047_fan_spd</th>\n",
|
54 |
+
" <th>rtu_004_fltrd_sa_flow_tn</th>\n",
|
55 |
+
" <th>rtu_004_sa_temp</th>\n",
|
56 |
+
" <th>rtu_004_pa_static_stpt_tn</th>\n",
|
57 |
+
" <th>rtu_004_oa_flow_tn</th>\n",
|
58 |
+
" <th>rtu_004_oadmpr_pct</th>\n",
|
59 |
+
" <th>...</th>\n",
|
60 |
+
" <th>zone_047_heating_sp</th>\n",
|
61 |
+
" <th>Unnamed: 47_y</th>\n",
|
62 |
+
" <th>hvac_S</th>\n",
|
63 |
+
" <th>hp_hws_temp</th>\n",
|
64 |
+
" <th>aru_001_cwr_temp</th>\n",
|
65 |
+
" <th>aru_001_cws_fr_gpm</th>\n",
|
66 |
+
" <th>aru_001_cws_temp</th>\n",
|
67 |
+
" <th>aru_001_hwr_temp</th>\n",
|
68 |
+
" <th>aru_001_hws_fr_gpm</th>\n",
|
69 |
+
" <th>aru_001_hws_temp</th>\n",
|
70 |
+
" </tr>\n",
|
71 |
+
" </thead>\n",
|
72 |
+
" <tbody>\n",
|
73 |
+
" <tr>\n",
|
74 |
+
" <th>0</th>\n",
|
75 |
+
" <td>2018-01-01 00:00:00</td>\n",
|
76 |
+
" <td>100.0</td>\n",
|
77 |
+
" <td>69.0</td>\n",
|
78 |
+
" <td>67.5</td>\n",
|
79 |
+
" <td>20.0</td>\n",
|
80 |
+
" <td>9265.604</td>\n",
|
81 |
+
" <td>66.1</td>\n",
|
82 |
+
" <td>0.06</td>\n",
|
83 |
+
" <td>0.000000</td>\n",
|
84 |
+
" <td>28.0</td>\n",
|
85 |
+
" <td>...</td>\n",
|
86 |
+
" <td>NaN</td>\n",
|
87 |
+
" <td>NaN</td>\n",
|
88 |
+
" <td>NaN</td>\n",
|
89 |
+
" <td>75.3</td>\n",
|
90 |
+
" <td>NaN</td>\n",
|
91 |
+
" <td>NaN</td>\n",
|
92 |
+
" <td>NaN</td>\n",
|
93 |
+
" <td>NaN</td>\n",
|
94 |
+
" <td>NaN</td>\n",
|
95 |
+
" <td>NaN</td>\n",
|
96 |
+
" </tr>\n",
|
97 |
+
" <tr>\n",
|
98 |
+
" <th>1</th>\n",
|
99 |
+
" <td>2018-01-01 00:01:00</td>\n",
|
100 |
+
" <td>100.0</td>\n",
|
101 |
+
" <td>69.0</td>\n",
|
102 |
+
" <td>67.5</td>\n",
|
103 |
+
" <td>20.0</td>\n",
|
104 |
+
" <td>9265.604</td>\n",
|
105 |
+
" <td>66.0</td>\n",
|
106 |
+
" <td>0.06</td>\n",
|
107 |
+
" <td>6572.099162</td>\n",
|
108 |
+
" <td>28.0</td>\n",
|
109 |
+
" <td>...</td>\n",
|
110 |
+
" <td>NaN</td>\n",
|
111 |
+
" <td>NaN</td>\n",
|
112 |
+
" <td>NaN</td>\n",
|
113 |
+
" <td>75.3</td>\n",
|
114 |
+
" <td>NaN</td>\n",
|
115 |
+
" <td>NaN</td>\n",
|
116 |
+
" <td>NaN</td>\n",
|
117 |
+
" <td>NaN</td>\n",
|
118 |
+
" <td>NaN</td>\n",
|
119 |
+
" <td>NaN</td>\n",
|
120 |
+
" </tr>\n",
|
121 |
+
" <tr>\n",
|
122 |
+
" <th>2</th>\n",
|
123 |
+
" <td>2018-01-01 00:02:00</td>\n",
|
124 |
+
" <td>100.0</td>\n",
|
125 |
+
" <td>69.0</td>\n",
|
126 |
+
" <td>67.5</td>\n",
|
127 |
+
" <td>20.0</td>\n",
|
128 |
+
" <td>9708.240</td>\n",
|
129 |
+
" <td>66.1</td>\n",
|
130 |
+
" <td>0.06</td>\n",
|
131 |
+
" <td>7628.832542</td>\n",
|
132 |
+
" <td>28.0</td>\n",
|
133 |
+
" <td>...</td>\n",
|
134 |
+
" <td>NaN</td>\n",
|
135 |
+
" <td>NaN</td>\n",
|
136 |
+
" <td>NaN</td>\n",
|
137 |
+
" <td>75.3</td>\n",
|
138 |
+
" <td>NaN</td>\n",
|
139 |
+
" <td>NaN</td>\n",
|
140 |
+
" <td>NaN</td>\n",
|
141 |
+
" <td>NaN</td>\n",
|
142 |
+
" <td>NaN</td>\n",
|
143 |
+
" <td>NaN</td>\n",
|
144 |
+
" </tr>\n",
|
145 |
+
" <tr>\n",
|
146 |
+
" <th>3</th>\n",
|
147 |
+
" <td>2018-01-01 00:03:00</td>\n",
|
148 |
+
" <td>100.0</td>\n",
|
149 |
+
" <td>69.0</td>\n",
|
150 |
+
" <td>67.5</td>\n",
|
151 |
+
" <td>20.0</td>\n",
|
152 |
+
" <td>9611.638</td>\n",
|
153 |
+
" <td>66.1</td>\n",
|
154 |
+
" <td>0.06</td>\n",
|
155 |
+
" <td>7710.294617</td>\n",
|
156 |
+
" <td>28.0</td>\n",
|
157 |
+
" <td>...</td>\n",
|
158 |
+
" <td>NaN</td>\n",
|
159 |
+
" <td>NaN</td>\n",
|
160 |
+
" <td>NaN</td>\n",
|
161 |
+
" <td>75.3</td>\n",
|
162 |
+
" <td>NaN</td>\n",
|
163 |
+
" <td>NaN</td>\n",
|
164 |
+
" <td>NaN</td>\n",
|
165 |
+
" <td>NaN</td>\n",
|
166 |
+
" <td>NaN</td>\n",
|
167 |
+
" <td>NaN</td>\n",
|
168 |
+
" </tr>\n",
|
169 |
+
" <tr>\n",
|
170 |
+
" <th>4</th>\n",
|
171 |
+
" <td>2018-01-01 00:04:00</td>\n",
|
172 |
+
" <td>100.0</td>\n",
|
173 |
+
" <td>69.0</td>\n",
|
174 |
+
" <td>67.5</td>\n",
|
175 |
+
" <td>20.0</td>\n",
|
176 |
+
" <td>9215.110</td>\n",
|
177 |
+
" <td>66.0</td>\n",
|
178 |
+
" <td>0.06</td>\n",
|
179 |
+
" <td>7139.184090</td>\n",
|
180 |
+
" <td>28.0</td>\n",
|
181 |
+
" <td>...</td>\n",
|
182 |
+
" <td>NaN</td>\n",
|
183 |
+
" <td>NaN</td>\n",
|
184 |
+
" <td>NaN</td>\n",
|
185 |
+
" <td>75.3</td>\n",
|
186 |
+
" <td>NaN</td>\n",
|
187 |
+
" <td>NaN</td>\n",
|
188 |
+
" <td>NaN</td>\n",
|
189 |
+
" <td>NaN</td>\n",
|
190 |
+
" <td>NaN</td>\n",
|
191 |
+
" <td>NaN</td>\n",
|
192 |
+
" </tr>\n",
|
193 |
+
" <tr>\n",
|
194 |
+
" <th>...</th>\n",
|
195 |
+
" <td>...</td>\n",
|
196 |
+
" <td>...</td>\n",
|
197 |
+
" <td>...</td>\n",
|
198 |
+
" <td>...</td>\n",
|
199 |
+
" <td>...</td>\n",
|
200 |
+
" <td>...</td>\n",
|
201 |
+
" <td>...</td>\n",
|
202 |
+
" <td>...</td>\n",
|
203 |
+
" <td>...</td>\n",
|
204 |
+
" <td>...</td>\n",
|
205 |
+
" <td>...</td>\n",
|
206 |
+
" <td>...</td>\n",
|
207 |
+
" <td>...</td>\n",
|
208 |
+
" <td>...</td>\n",
|
209 |
+
" <td>...</td>\n",
|
210 |
+
" <td>...</td>\n",
|
211 |
+
" <td>...</td>\n",
|
212 |
+
" <td>...</td>\n",
|
213 |
+
" <td>...</td>\n",
|
214 |
+
" <td>...</td>\n",
|
215 |
+
" <td>...</td>\n",
|
216 |
+
" </tr>\n",
|
217 |
+
" <tr>\n",
|
218 |
+
" <th>2072149</th>\n",
|
219 |
+
" <td>2020-12-31 23:58:00</td>\n",
|
220 |
+
" <td>100.0</td>\n",
|
221 |
+
" <td>68.0</td>\n",
|
222 |
+
" <td>63.2</td>\n",
|
223 |
+
" <td>20.0</td>\n",
|
224 |
+
" <td>18884.834</td>\n",
|
225 |
+
" <td>64.4</td>\n",
|
226 |
+
" <td>0.06</td>\n",
|
227 |
+
" <td>2938.320000</td>\n",
|
228 |
+
" <td>23.4</td>\n",
|
229 |
+
" <td>...</td>\n",
|
230 |
+
" <td>71.0</td>\n",
|
231 |
+
" <td>69.0</td>\n",
|
232 |
+
" <td>23.145000</td>\n",
|
233 |
+
" <td>123.8</td>\n",
|
234 |
+
" <td>56.25</td>\n",
|
235 |
+
" <td>54.71</td>\n",
|
236 |
+
" <td>56.4</td>\n",
|
237 |
+
" <td>123.42</td>\n",
|
238 |
+
" <td>61.6</td>\n",
|
239 |
+
" <td>122.36</td>\n",
|
240 |
+
" </tr>\n",
|
241 |
+
" <tr>\n",
|
242 |
+
" <th>2072150</th>\n",
|
243 |
+
" <td>2020-12-31 23:58:00</td>\n",
|
244 |
+
" <td>100.0</td>\n",
|
245 |
+
" <td>68.0</td>\n",
|
246 |
+
" <td>63.2</td>\n",
|
247 |
+
" <td>20.0</td>\n",
|
248 |
+
" <td>18884.834</td>\n",
|
249 |
+
" <td>64.4</td>\n",
|
250 |
+
" <td>0.06</td>\n",
|
251 |
+
" <td>2938.320000</td>\n",
|
252 |
+
" <td>23.4</td>\n",
|
253 |
+
" <td>...</td>\n",
|
254 |
+
" <td>71.0</td>\n",
|
255 |
+
" <td>69.0</td>\n",
|
256 |
+
" <td>23.145000</td>\n",
|
257 |
+
" <td>123.8</td>\n",
|
258 |
+
" <td>56.25</td>\n",
|
259 |
+
" <td>54.71</td>\n",
|
260 |
+
" <td>56.4</td>\n",
|
261 |
+
" <td>123.42</td>\n",
|
262 |
+
" <td>61.6</td>\n",
|
263 |
+
" <td>122.36</td>\n",
|
264 |
+
" </tr>\n",
|
265 |
+
" <tr>\n",
|
266 |
+
" <th>2072151</th>\n",
|
267 |
+
" <td>2020-12-31 23:59:00</td>\n",
|
268 |
+
" <td>100.0</td>\n",
|
269 |
+
" <td>68.0</td>\n",
|
270 |
+
" <td>63.2</td>\n",
|
271 |
+
" <td>20.0</td>\n",
|
272 |
+
" <td>19345.508</td>\n",
|
273 |
+
" <td>64.3</td>\n",
|
274 |
+
" <td>0.06</td>\n",
|
275 |
+
" <td>3154.390000</td>\n",
|
276 |
+
" <td>23.4</td>\n",
|
277 |
+
" <td>...</td>\n",
|
278 |
+
" <td>71.0</td>\n",
|
279 |
+
" <td>69.0</td>\n",
|
280 |
+
" <td>23.145000</td>\n",
|
281 |
+
" <td>123.8</td>\n",
|
282 |
+
" <td>56.25</td>\n",
|
283 |
+
" <td>54.71</td>\n",
|
284 |
+
" <td>56.4</td>\n",
|
285 |
+
" <td>123.42</td>\n",
|
286 |
+
" <td>61.6</td>\n",
|
287 |
+
" <td>122.36</td>\n",
|
288 |
+
" </tr>\n",
|
289 |
+
" <tr>\n",
|
290 |
+
" <th>2072152</th>\n",
|
291 |
+
" <td>2020-12-31 23:59:00</td>\n",
|
292 |
+
" <td>100.0</td>\n",
|
293 |
+
" <td>68.0</td>\n",
|
294 |
+
" <td>63.2</td>\n",
|
295 |
+
" <td>20.0</td>\n",
|
296 |
+
" <td>19345.508</td>\n",
|
297 |
+
" <td>64.3</td>\n",
|
298 |
+
" <td>0.06</td>\n",
|
299 |
+
" <td>3154.390000</td>\n",
|
300 |
+
" <td>23.4</td>\n",
|
301 |
+
" <td>...</td>\n",
|
302 |
+
" <td>71.0</td>\n",
|
303 |
+
" <td>69.0</td>\n",
|
304 |
+
" <td>23.145000</td>\n",
|
305 |
+
" <td>123.8</td>\n",
|
306 |
+
" <td>56.25</td>\n",
|
307 |
+
" <td>54.71</td>\n",
|
308 |
+
" <td>56.4</td>\n",
|
309 |
+
" <td>123.42</td>\n",
|
310 |
+
" <td>61.6</td>\n",
|
311 |
+
" <td>122.36</td>\n",
|
312 |
+
" </tr>\n",
|
313 |
+
" <tr>\n",
|
314 |
+
" <th>2072153</th>\n",
|
315 |
+
" <td>2021-01-01 00:00:00</td>\n",
|
316 |
+
" <td>100.0</td>\n",
|
317 |
+
" <td>68.0</td>\n",
|
318 |
+
" <td>63.2</td>\n",
|
319 |
+
" <td>20.0</td>\n",
|
320 |
+
" <td>18650.232</td>\n",
|
321 |
+
" <td>64.1</td>\n",
|
322 |
+
" <td>0.06</td>\n",
|
323 |
+
" <td>3076.270000</td>\n",
|
324 |
+
" <td>22.9</td>\n",
|
325 |
+
" <td>...</td>\n",
|
326 |
+
" <td>71.0</td>\n",
|
327 |
+
" <td>69.0</td>\n",
|
328 |
+
" <td>23.788947</td>\n",
|
329 |
+
" <td>123.8</td>\n",
|
330 |
+
" <td>56.25</td>\n",
|
331 |
+
" <td>54.71</td>\n",
|
332 |
+
" <td>56.4</td>\n",
|
333 |
+
" <td>123.42</td>\n",
|
334 |
+
" <td>61.6</td>\n",
|
335 |
+
" <td>122.36</td>\n",
|
336 |
+
" </tr>\n",
|
337 |
+
" </tbody>\n",
|
338 |
+
"</table>\n",
|
339 |
+
"<p>2072154 rows Γ 30 columns</p>\n",
|
340 |
+
"</div>"
|
341 |
+
],
|
342 |
+
"text/plain": [
|
343 |
+
" date zone_047_hw_valve rtu_004_sat_sp_tn \\\n",
|
344 |
+
"0 2018-01-01 00:00:00 100.0 69.0 \n",
|
345 |
+
"1 2018-01-01 00:01:00 100.0 69.0 \n",
|
346 |
+
"2 2018-01-01 00:02:00 100.0 69.0 \n",
|
347 |
+
"3 2018-01-01 00:03:00 100.0 69.0 \n",
|
348 |
+
"4 2018-01-01 00:04:00 100.0 69.0 \n",
|
349 |
+
"... ... ... ... \n",
|
350 |
+
"2072149 2020-12-31 23:58:00 100.0 68.0 \n",
|
351 |
+
"2072150 2020-12-31 23:58:00 100.0 68.0 \n",
|
352 |
+
"2072151 2020-12-31 23:59:00 100.0 68.0 \n",
|
353 |
+
"2072152 2020-12-31 23:59:00 100.0 68.0 \n",
|
354 |
+
"2072153 2021-01-01 00:00:00 100.0 68.0 \n",
|
355 |
+
"\n",
|
356 |
+
" zone_047_temp zone_047_fan_spd rtu_004_fltrd_sa_flow_tn \\\n",
|
357 |
+
"0 67.5 20.0 9265.604 \n",
|
358 |
+
"1 67.5 20.0 9265.604 \n",
|
359 |
+
"2 67.5 20.0 9708.240 \n",
|
360 |
+
"3 67.5 20.0 9611.638 \n",
|
361 |
+
"4 67.5 20.0 9215.110 \n",
|
362 |
+
"... ... ... ... \n",
|
363 |
+
"2072149 63.2 20.0 18884.834 \n",
|
364 |
+
"2072150 63.2 20.0 18884.834 \n",
|
365 |
+
"2072151 63.2 20.0 19345.508 \n",
|
366 |
+
"2072152 63.2 20.0 19345.508 \n",
|
367 |
+
"2072153 63.2 20.0 18650.232 \n",
|
368 |
+
"\n",
|
369 |
+
" rtu_004_sa_temp rtu_004_pa_static_stpt_tn rtu_004_oa_flow_tn \\\n",
|
370 |
+
"0 66.1 0.06 0.000000 \n",
|
371 |
+
"1 66.0 0.06 6572.099162 \n",
|
372 |
+
"2 66.1 0.06 7628.832542 \n",
|
373 |
+
"3 66.1 0.06 7710.294617 \n",
|
374 |
+
"4 66.0 0.06 7139.184090 \n",
|
375 |
+
"... ... ... ... \n",
|
376 |
+
"2072149 64.4 0.06 2938.320000 \n",
|
377 |
+
"2072150 64.4 0.06 2938.320000 \n",
|
378 |
+
"2072151 64.3 0.06 3154.390000 \n",
|
379 |
+
"2072152 64.3 0.06 3154.390000 \n",
|
380 |
+
"2072153 64.1 0.06 3076.270000 \n",
|
381 |
+
"\n",
|
382 |
+
" rtu_004_oadmpr_pct ... zone_047_heating_sp Unnamed: 47_y \\\n",
|
383 |
+
"0 28.0 ... NaN NaN \n",
|
384 |
+
"1 28.0 ... NaN NaN \n",
|
385 |
+
"2 28.0 ... NaN NaN \n",
|
386 |
+
"3 28.0 ... NaN NaN \n",
|
387 |
+
"4 28.0 ... NaN NaN \n",
|
388 |
+
"... ... ... ... ... \n",
|
389 |
+
"2072149 23.4 ... 71.0 69.0 \n",
|
390 |
+
"2072150 23.4 ... 71.0 69.0 \n",
|
391 |
+
"2072151 23.4 ... 71.0 69.0 \n",
|
392 |
+
"2072152 23.4 ... 71.0 69.0 \n",
|
393 |
+
"2072153 22.9 ... 71.0 69.0 \n",
|
394 |
+
"\n",
|
395 |
+
" hvac_S hp_hws_temp aru_001_cwr_temp aru_001_cws_fr_gpm \\\n",
|
396 |
+
"0 NaN 75.3 NaN NaN \n",
|
397 |
+
"1 NaN 75.3 NaN NaN \n",
|
398 |
+
"2 NaN 75.3 NaN NaN \n",
|
399 |
+
"3 NaN 75.3 NaN NaN \n",
|
400 |
+
"4 NaN 75.3 NaN NaN \n",
|
401 |
+
"... ... ... ... ... \n",
|
402 |
+
"2072149 23.145000 123.8 56.25 54.71 \n",
|
403 |
+
"2072150 23.145000 123.8 56.25 54.71 \n",
|
404 |
+
"2072151 23.145000 123.8 56.25 54.71 \n",
|
405 |
+
"2072152 23.145000 123.8 56.25 54.71 \n",
|
406 |
+
"2072153 23.788947 123.8 56.25 54.71 \n",
|
407 |
+
"\n",
|
408 |
+
" aru_001_cws_temp aru_001_hwr_temp aru_001_hws_fr_gpm \\\n",
|
409 |
+
"0 NaN NaN NaN \n",
|
410 |
+
"1 NaN NaN NaN \n",
|
411 |
+
"2 NaN NaN NaN \n",
|
412 |
+
"3 NaN NaN NaN \n",
|
413 |
+
"4 NaN NaN NaN \n",
|
414 |
+
"... ... ... ... \n",
|
415 |
+
"2072149 56.4 123.42 61.6 \n",
|
416 |
+
"2072150 56.4 123.42 61.6 \n",
|
417 |
+
"2072151 56.4 123.42 61.6 \n",
|
418 |
+
"2072152 56.4 123.42 61.6 \n",
|
419 |
+
"2072153 56.4 123.42 61.6 \n",
|
420 |
+
"\n",
|
421 |
+
" aru_001_hws_temp \n",
|
422 |
+
"0 NaN \n",
|
423 |
+
"1 NaN \n",
|
424 |
+
"2 NaN \n",
|
425 |
+
"3 NaN \n",
|
426 |
+
"4 NaN \n",
|
427 |
+
"... ... \n",
|
428 |
+
"2072149 122.36 \n",
|
429 |
+
"2072150 122.36 \n",
|
430 |
+
"2072151 122.36 \n",
|
431 |
+
"2072152 122.36 \n",
|
432 |
+
"2072153 122.36 \n",
|
433 |
+
"\n",
|
434 |
+
"[2072154 rows x 30 columns]"
|
435 |
+
]
|
436 |
+
},
|
437 |
+
"execution_count": 2,
|
438 |
+
"metadata": {},
|
439 |
+
"output_type": "execute_result"
|
440 |
+
}
|
441 |
+
],
|
442 |
+
"source": [
|
443 |
+
"merged = pd.read_csv(r'C:\\Users\\jerin\\Downloads\\lbnlbldg59\\lbnlbldg59\\lbnlbldg59.processed\\LBNLBLDG59\\clean_Bldg59_2018to2020\\clean data\\long_merge.csv')\n",
|
444 |
+
"\n",
|
445 |
+
"zone = \"47\"\n",
|
446 |
+
"\n",
|
447 |
+
"if zone in [\"36\", \"37\", \"38\", \"39\", \"40\", \"41\", \"42\", \"64\", \"65\", \"66\", \"67\", \"68\", \"69\", \"70\"]:\n",
|
448 |
+
" rtu = \"rtu_001\"\n",
|
449 |
+
" wing = \"hvac_N\"\n",
|
450 |
+
"elif zone in [\"18\", \"25\", \"26\", \"45\", \"48\", \"55\", \"56\", \"61\"]:\n",
|
451 |
+
" rtu = \"rtu_003\"\n",
|
452 |
+
" wing = \"hvac_S\"\n",
|
453 |
+
"elif zone in [\"16\", \"17\", \"21\", \"22\", \"23\", \"24\", \"46\", \"47\", \"51\", \"52\", \"53\", \"54\"]:\n",
|
454 |
+
" rtu = \"rtu_004\"\n",
|
455 |
+
" wing = \"hvac_S\"\n",
|
456 |
+
"else:\n",
|
457 |
+
" rtu = \"rtu_002\"\n",
|
458 |
+
" wing = \"hvac_N\"\n",
|
459 |
+
"#merged is the dataframe\n",
|
460 |
+
"sorted = merged[[\"date\"]+[col for col in merged.columns if zone in col or rtu in col or wing in col]+[\"hp_hws_temp\", \"aru_001_cwr_temp\" , \"aru_001_cws_fr_gpm\" ,\"aru_001_cws_temp\",\"aru_001_hwr_temp\" ,\"aru_001_hws_fr_gpm\" ,\"aru_001_hws_temp\"]]\n",
|
461 |
+
"sorted"
|
462 |
+
]
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"cell_type": "code",
|
466 |
+
"execution_count": 3,
|
467 |
+
"metadata": {},
|
468 |
+
"outputs": [
|
469 |
+
{
|
470 |
+
"data": {
|
471 |
+
"text/plain": [
|
472 |
+
"date 0\n",
|
473 |
+
"zone_047_hw_valve 0\n",
|
474 |
+
"rtu_004_sat_sp_tn 0\n",
|
475 |
+
"zone_047_temp 0\n",
|
476 |
+
"zone_047_fan_spd 0\n",
|
477 |
+
"rtu_004_fltrd_sa_flow_tn 0\n",
|
478 |
+
"rtu_004_sa_temp 0\n",
|
479 |
+
"rtu_004_pa_static_stpt_tn 0\n",
|
480 |
+
"rtu_004_oa_flow_tn 0\n",
|
481 |
+
"rtu_004_oadmpr_pct 0\n",
|
482 |
+
"rtu_004_econ_stpt_tn 0\n",
|
483 |
+
"rtu_004_ra_temp 0\n",
|
484 |
+
"rtu_004_oa_temp 0\n",
|
485 |
+
"rtu_004_ma_temp 0\n",
|
486 |
+
"rtu_004_sf_vfd_spd_fbk_tn 0\n",
|
487 |
+
"rtu_004_rf_vfd_spd_fbk_tn 0\n",
|
488 |
+
"rtu_004_fltrd_gnd_lvl_plenum_press_tn 0\n",
|
489 |
+
"rtu_004_fltrd_lvl2_plenum_press_tn 0\n",
|
490 |
+
"zone_047_cooling_sp 0\n",
|
491 |
+
"Unnamed: 47_x 394570\n",
|
492 |
+
"zone_047_heating_sp 0\n",
|
493 |
+
"Unnamed: 47_y 394570\n",
|
494 |
+
"hvac_S 13035\n",
|
495 |
+
"hp_hws_temp 0\n",
|
496 |
+
"aru_001_cwr_temp 524350\n",
|
497 |
+
"aru_001_cws_fr_gpm 524350\n",
|
498 |
+
"aru_001_cws_temp 524350\n",
|
499 |
+
"aru_001_hwr_temp 299165\n",
|
500 |
+
"aru_001_hws_fr_gpm 299165\n",
|
501 |
+
"aru_001_hws_temp 299165\n",
|
502 |
+
"dtype: int64"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
"execution_count": 3,
|
506 |
+
"metadata": {},
|
507 |
+
"output_type": "execute_result"
|
508 |
+
}
|
509 |
+
],
|
510 |
+
"source": [
|
511 |
+
"final_df = sorted.copy()\n",
|
512 |
+
"final_df['date'] = pd.to_datetime(final_df['date'], format = \"%Y-%m-%d %H:%M:%S\")\n",
|
513 |
+
"final_df = final_df[ (final_df.date.dt.date >date(2019, 4, 1)) & (final_df.date.dt.date< date(2020, 2, 15))]\n",
|
514 |
+
"final_df.isna().sum()"
|
515 |
+
]
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"cell_type": "code",
|
519 |
+
"execution_count": 4,
|
520 |
+
"metadata": {},
|
521 |
+
"outputs": [],
|
522 |
+
"source": [
|
523 |
+
"testdataset_df = final_df[(final_df.date.dt.date <date(2019, 11, 8))]\n",
|
524 |
+
"\n",
|
525 |
+
"traindataset_df = final_df[ (final_df.date.dt.date >date(2019, 11, 8))]\n",
|
526 |
+
"\n",
|
527 |
+
"testdataset = testdataset_df[['rtu_004_oa_temp','rtu_004_ra_temp','hp_hws_temp','rtu_004_oa_flow_tn','rtu_004_oadmpr_pct',\n",
|
528 |
+
" 'rtu_004_sat_sp_tn','rtu_004_rf_vfd_spd_fbk_tn','rtu_004_ma_temp','rtu_004_sa_temp','rtu_004_fltrd_sa_flow_tn',\n",
|
529 |
+
" 'rtu_004_sf_vfd_spd_fbk_tn']].values\n",
|
530 |
+
"\n",
|
531 |
+
"\n",
|
532 |
+
"traindataset = traindataset_df[['rtu_004_oa_temp','rtu_004_ra_temp','hp_hws_temp','rtu_004_oa_flow_tn','rtu_004_oadmpr_pct',\n",
|
533 |
+
" 'rtu_004_sat_sp_tn','rtu_004_rf_vfd_spd_fbk_tn','rtu_004_ma_temp','rtu_004_sa_temp','rtu_004_fltrd_sa_flow_tn',\n",
|
534 |
+
" 'rtu_004_sf_vfd_spd_fbk_tn']].values"
|
535 |
+
]
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"cell_type": "code",
|
539 |
+
"execution_count": 5,
|
540 |
+
"metadata": {},
|
541 |
+
"outputs": [],
|
542 |
+
"source": [
|
543 |
+
"traindataset = traindataset.astype('float32')\n",
|
544 |
+
"testdataset = testdataset.astype('float32')\n",
|
545 |
+
"\n",
|
546 |
+
"\n",
|
547 |
+
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
|
548 |
+
"traindataset = scaler.fit_transform(traindataset)\n",
|
549 |
+
"testdataset = scaler.transform(testdataset)"
|
550 |
+
]
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"cell_type": "code",
|
554 |
+
"execution_count": 47,
|
555 |
+
"metadata": {},
|
556 |
+
"outputs": [
|
557 |
+
{
|
558 |
+
"name": "stderr",
|
559 |
+
"output_type": "stream",
|
560 |
+
"text": [
|
561 |
+
"c:\\Users\\jerin\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\keras\\src\\layers\\rnn\\rnn.py:205: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
|
562 |
+
" super().__init__(**kwargs)\n"
|
563 |
+
]
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"name": "stdout",
|
567 |
+
"output_type": "stream",
|
568 |
+
"text": [
|
569 |
+
"Epoch 1/10\n",
|
570 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 0.0071\n",
|
571 |
+
"Epoch 1: val_loss improved from inf to 0.01145, saving model to lstm2.keras\n",
|
572 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m77s\u001b[0m 23ms/step - loss: 0.0071 - val_loss: 0.0115\n",
|
573 |
+
"Epoch 2/10\n",
|
574 |
+
"\u001b[1m3217/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 0.0013\n",
|
575 |
+
"Epoch 2: val_loss improved from 0.01145 to 0.01144, saving model to lstm2.keras\n",
|
576 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m73s\u001b[0m 23ms/step - loss: 0.0013 - val_loss: 0.0114\n",
|
577 |
+
"Epoch 3/10\n",
|
578 |
+
"\u001b[1m3218/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 0.0010\n",
|
579 |
+
"Epoch 3: val_loss improved from 0.01144 to 0.00729, saving model to lstm2.keras\n",
|
580 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m71s\u001b[0m 22ms/step - loss: 0.0010 - val_loss: 0.0073\n",
|
581 |
+
"Epoch 4/10\n",
|
582 |
+
"\u001b[1m3218/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 5.5876e-04\n",
|
583 |
+
"Epoch 4: val_loss improved from 0.00729 to 0.00409, saving model to lstm2.keras\n",
|
584 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββοΏ½οΏ½οΏ½βββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m73s\u001b[0m 23ms/step - loss: 5.5871e-04 - val_loss: 0.0041\n",
|
585 |
+
"Epoch 5/10\n",
|
586 |
+
"\u001b[1m3218/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 3.9261e-04\n",
|
587 |
+
"Epoch 5: val_loss improved from 0.00409 to 0.00386, saving model to lstm2.keras\n",
|
588 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m72s\u001b[0m 22ms/step - loss: 3.9260e-04 - val_loss: 0.0039\n",
|
589 |
+
"Epoch 6/10\n",
|
590 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 3.3977e-04\n",
|
591 |
+
"Epoch 6: val_loss did not improve from 0.00386\n",
|
592 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m70s\u001b[0m 22ms/step - loss: 3.3976e-04 - val_loss: 0.0049\n",
|
593 |
+
"Epoch 7/10\n",
|
594 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 3.0365e-04\n",
|
595 |
+
"Epoch 7: val_loss did not improve from 0.00386\n",
|
596 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m69s\u001b[0m 22ms/step - loss: 3.0364e-04 - val_loss: 0.0052\n",
|
597 |
+
"Epoch 8/10\n",
|
598 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 2.7422e-04\n",
|
599 |
+
"Epoch 8: val_loss did not improve from 0.00386\n",
|
600 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m70s\u001b[0m 22ms/step - loss: 2.7422e-04 - val_loss: 0.0052\n",
|
601 |
+
"Epoch 9/10\n",
|
602 |
+
"\u001b[1m3217/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 2.5380e-04\n",
|
603 |
+
"Epoch 9: val_loss did not improve from 0.00386\n",
|
604 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m73s\u001b[0m 23ms/step - loss: 2.5379e-04 - val_loss: 0.0058\n",
|
605 |
+
"Epoch 10/10\n",
|
606 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 2.3404e-04\n",
|
607 |
+
"Epoch 10: val_loss did not improve from 0.00386\n",
|
608 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m72s\u001b[0m 22ms/step - loss: 2.3403e-04 - val_loss: 0.0099\n"
|
609 |
+
]
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"data": {
|
613 |
+
"text/plain": [
|
614 |
+
"<keras.src.callbacks.history.History at 0x2a05f762150>"
|
615 |
+
]
|
616 |
+
},
|
617 |
+
"execution_count": 47,
|
618 |
+
"metadata": {},
|
619 |
+
"output_type": "execute_result"
|
620 |
+
}
|
621 |
+
],
|
622 |
+
"source": [
|
623 |
+
"train,test = traindataset,testdataset\n",
|
624 |
+
"\n",
|
625 |
+
"def create_dataset(dataset,time_step):\n",
|
626 |
+
" x1,x2,x3,x4,x5,x6,x7,x8,x9,Y = [],[],[],[],[],[],[],[],[],[]\n",
|
627 |
+
" for i in range(len(dataset)-time_step-1):\n",
|
628 |
+
" x1.append(dataset[i:(i+time_step), 0])\n",
|
629 |
+
" x2.append(dataset[i:(i+time_step), 1])\n",
|
630 |
+
" x3.append(dataset[i:(i+time_step), 2])\n",
|
631 |
+
" x4.append(dataset[i:(i+time_step), 3])\n",
|
632 |
+
" x5.append(dataset[i:(i+time_step), 4])\n",
|
633 |
+
" x6.append(dataset[i:(i+time_step), 5])\n",
|
634 |
+
" x7.append(dataset[i:(i+time_step), 6])\n",
|
635 |
+
" x8.append(dataset[i:(i+time_step), 7])\n",
|
636 |
+
" # x9.append(dataset[i:(i+time_step), 8])\n",
|
637 |
+
" Y.append([dataset[i + time_step, 7]])\n",
|
638 |
+
" x1,x2,x3,x4,x5,x6,x7,x8 = np.array(x1),np.array(x2),np.array(x3), np.array(x4),np.array(x5),np.array(x6),np.array(x7),np.array(x8)#,np.array(x9)\n",
|
639 |
+
" Y = np.reshape(Y,(len(Y),1))\n",
|
640 |
+
" return np.stack([x1,x2,x3,x4,x5,x6,x7,x8],axis=2),Y\n",
|
641 |
+
"\n",
|
642 |
+
"\n",
|
643 |
+
"\n",
|
644 |
+
"\n",
|
645 |
+
"time_step = 30\n",
|
646 |
+
"X_train, y_train = create_dataset(train, time_step)\n",
|
647 |
+
"X_test, y_test = create_dataset(test, time_step)\n",
|
648 |
+
"\n",
|
649 |
+
"\n",
|
650 |
+
"model = Sequential()\n",
|
651 |
+
"model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))\n",
|
652 |
+
"model.add(LSTM(units=50, return_sequences=True))\n",
|
653 |
+
"model.add(LSTM(units=30))\n",
|
654 |
+
"model.add(Dense(units=1))\n",
|
655 |
+
"\n",
|
656 |
+
"model.compile(optimizer='adam', loss='mean_squared_error')\n",
|
657 |
+
"\n",
|
658 |
+
"checkpoint_path = \"lstm2.keras\"\n",
|
659 |
+
"checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
|
660 |
+
"model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=64, verbose=1, callbacks=[checkpoint_callback])\n"
|
661 |
+
]
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"cell_type": "code",
|
665 |
+
"execution_count": 45,
|
666 |
+
"metadata": {},
|
667 |
+
"outputs": [
|
668 |
+
{
|
669 |
+
"name": "stdout",
|
670 |
+
"output_type": "stream",
|
671 |
+
"text": [
|
672 |
+
"Epoch 1/5\n",
|
673 |
+
"\u001b[1m3218/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - loss: 1.8977e-04\n",
|
674 |
+
"Epoch 1: val_loss improved from inf to 0.01131, saving model to lstm2.keras\n",
|
675 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m94s\u001b[0m 29ms/step - loss: 1.8977e-04 - val_loss: 0.0113\n",
|
676 |
+
"Epoch 2/5\n",
|
677 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 18ms/step - loss: 1.7357e-04\n",
|
678 |
+
"Epoch 2: val_loss did not improve from 0.01131\n",
|
679 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m91s\u001b[0m 28ms/step - loss: 1.7358e-04 - val_loss: 0.0123\n",
|
680 |
+
"Epoch 3/5\n",
|
681 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 18ms/step - loss: 1.6701e-04\n",
|
682 |
+
"Epoch 3: val_loss did not improve from 0.01131\n",
|
683 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m92s\u001b[0m 28ms/step - loss: 1.6701e-04 - val_loss: 0.0127\n",
|
684 |
+
"Epoch 4/5\n",
|
685 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step - loss: 1.7043e-04\n",
|
686 |
+
"Epoch 4: val_loss did not improve from 0.01131\n",
|
687 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m91s\u001b[0m 28ms/step - loss: 1.7043e-04 - val_loss: 0.0131\n",
|
688 |
+
"Epoch 5/5\n",
|
689 |
+
"\u001b[1m3218/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - loss: 1.6319e-04\n",
|
690 |
+
"Epoch 5: val_loss did not improve from 0.01131\n",
|
691 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m104s\u001b[0m 32ms/step - loss: 1.6319e-04 - val_loss: 0.0134\n"
|
692 |
+
]
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"data": {
|
696 |
+
"text/plain": [
|
697 |
+
"<keras.src.callbacks.history.History at 0x2a05f486ed0>"
|
698 |
+
]
|
699 |
+
},
|
700 |
+
"execution_count": 45,
|
701 |
+
"metadata": {},
|
702 |
+
"output_type": "execute_result"
|
703 |
+
}
|
704 |
+
],
|
705 |
+
"source": [
|
706 |
+
"checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
|
707 |
+
"model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=64, verbose=1, callbacks=[checkpoint_callback])"
|
708 |
+
]
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"cell_type": "code",
|
712 |
+
"execution_count": 48,
|
713 |
+
"metadata": {},
|
714 |
+
"outputs": [
|
715 |
+
{
|
716 |
+
"name": "stdout",
|
717 |
+
"output_type": "stream",
|
718 |
+
"text": [
|
719 |
+
"\u001b[1m9900/9900\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m34s\u001b[0m 3ms/step\n"
|
720 |
+
]
|
721 |
+
}
|
722 |
+
],
|
723 |
+
"source": [
|
724 |
+
"# train_predict = model.predict(X_train)\n",
|
725 |
+
"test_predict = model.predict(X_test)"
|
726 |
+
]
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"cell_type": "code",
|
730 |
+
"execution_count": 49,
|
731 |
+
"metadata": {},
|
732 |
+
"outputs": [],
|
733 |
+
"source": [
|
734 |
+
"%matplotlib qt\n",
|
735 |
+
"#'rtu_004_ma_temp','rtu_004_sa_temp'\n",
|
736 |
+
"var = 0\n",
|
737 |
+
"plt.plot(testdataset_df['date'][31:],y_test, label='Original Testing Data', color='blue')\n",
|
738 |
+
"plt.plot(testdataset_df['date'][31:],test_predict, label='Predicted Testing Data', color='red',alpha=0.8)\n",
|
739 |
+
"# anomalies = np.where(abs(test_predict[:,var] - y_test[:,var]) > 0.38)[0]\n",
|
740 |
+
"# plt.scatter(anomalies,test_predict[anomalies,var], color='black',marker =\"o\",s=100 )\n",
|
741 |
+
"\n",
|
742 |
+
"\n",
|
743 |
+
"plt.title('Testing Data - Predicted vs Actual')\n",
|
744 |
+
"plt.xlabel('Time')\n",
|
745 |
+
"plt.ylabel('Value')\n",
|
746 |
+
"plt.legend()\n",
|
747 |
+
"plt.show()"
|
748 |
+
]
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"cell_type": "code",
|
752 |
+
"execution_count": 50,
|
753 |
+
"metadata": {},
|
754 |
+
"outputs": [
|
755 |
+
{
|
756 |
+
"name": "stderr",
|
757 |
+
"output_type": "stream",
|
758 |
+
"text": [
|
759 |
+
"WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
|
760 |
+
]
|
761 |
+
}
|
762 |
+
],
|
763 |
+
"source": [
|
764 |
+
"from tensorflow.keras.models import load_model\n",
|
765 |
+
"# model.save(\"MA_temp_model.h5\") \n",
|
766 |
+
"# loaded_model = load_model(\"MA_temp_model.h5\")"
|
767 |
+
]
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"cell_type": "code",
|
771 |
+
"execution_count": null,
|
772 |
+
"metadata": {},
|
773 |
+
"outputs": [],
|
774 |
+
"source": []
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"cell_type": "markdown",
|
778 |
+
"metadata": {},
|
779 |
+
"source": [
|
780 |
+
"ENERGY DATA"
|
781 |
+
]
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"cell_type": "code",
|
785 |
+
"execution_count": 3,
|
786 |
+
"metadata": {},
|
787 |
+
"outputs": [
|
788 |
+
{
|
789 |
+
"data": {
|
790 |
+
"text/html": [
|
791 |
+
"<div>\n",
|
792 |
+
"<style scoped>\n",
|
793 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
794 |
+
" vertical-align: middle;\n",
|
795 |
+
" }\n",
|
796 |
+
"\n",
|
797 |
+
" .dataframe tbody tr th {\n",
|
798 |
+
" vertical-align: top;\n",
|
799 |
+
" }\n",
|
800 |
+
"\n",
|
801 |
+
" .dataframe thead th {\n",
|
802 |
+
" text-align: right;\n",
|
803 |
+
" }\n",
|
804 |
+
"</style>\n",
|
805 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
806 |
+
" <thead>\n",
|
807 |
+
" <tr style=\"text-align: right;\">\n",
|
808 |
+
" <th></th>\n",
|
809 |
+
" <th>date</th>\n",
|
810 |
+
" <th>rtu_001_sat_sp_tn</th>\n",
|
811 |
+
" <th>rtu_002_sat_sp_tn</th>\n",
|
812 |
+
" <th>rtu_003_sat_sp_tn</th>\n",
|
813 |
+
" <th>rtu_004_sat_sp_tn</th>\n",
|
814 |
+
" <th>rtu_001_fltrd_sa_flow_tn</th>\n",
|
815 |
+
" <th>rtu_002_fltrd_sa_flow_tn</th>\n",
|
816 |
+
" <th>rtu_003_fltrd_sa_flow_tn</th>\n",
|
817 |
+
" <th>rtu_004_fltrd_sa_flow_tn</th>\n",
|
818 |
+
" <th>rtu_001_sa_temp</th>\n",
|
819 |
+
" <th>...</th>\n",
|
820 |
+
" <th>rtu_001_fltrd_gnd_lvl_plenum_press_tn</th>\n",
|
821 |
+
" <th>rtu_002_fltrd_gnd_lvl_plenum_press_tn</th>\n",
|
822 |
+
" <th>rtu_003_fltrd_gnd_lvl_plenum_press_tn</th>\n",
|
823 |
+
" <th>rtu_004_fltrd_gnd_lvl_plenum_press_tn</th>\n",
|
824 |
+
" <th>rtu_001_fltrd_lvl2_plenum_press_tn</th>\n",
|
825 |
+
" <th>rtu_002_fltrd_lvl2_plenum_press_tn</th>\n",
|
826 |
+
" <th>rtu_003_fltrd_lvl2_plenum_press_tn</th>\n",
|
827 |
+
" <th>rtu_004_fltrd_lvl2_plenum_press_tn</th>\n",
|
828 |
+
" <th>hvac_N</th>\n",
|
829 |
+
" <th>hvac_S</th>\n",
|
830 |
+
" </tr>\n",
|
831 |
+
" </thead>\n",
|
832 |
+
" <tbody>\n",
|
833 |
+
" <tr>\n",
|
834 |
+
" <th>0</th>\n",
|
835 |
+
" <td>2018-01-01 00:00:00</td>\n",
|
836 |
+
" <td>68.0</td>\n",
|
837 |
+
" <td>70.0</td>\n",
|
838 |
+
" <td>65.0</td>\n",
|
839 |
+
" <td>69.0</td>\n",
|
840 |
+
" <td>14131.449</td>\n",
|
841 |
+
" <td>13998.757</td>\n",
|
842 |
+
" <td>13558.539</td>\n",
|
843 |
+
" <td>9265.604</td>\n",
|
844 |
+
" <td>67.6</td>\n",
|
845 |
+
" <td>...</td>\n",
|
846 |
+
" <td>0.030</td>\n",
|
847 |
+
" <td>0.04</td>\n",
|
848 |
+
" <td>0.04</td>\n",
|
849 |
+
" <td>0.047</td>\n",
|
850 |
+
" <td>0.050</td>\n",
|
851 |
+
" <td>0.05</td>\n",
|
852 |
+
" <td>0.05</td>\n",
|
853 |
+
" <td>0.050</td>\n",
|
854 |
+
" <td>NaN</td>\n",
|
855 |
+
" <td>NaN</td>\n",
|
856 |
+
" </tr>\n",
|
857 |
+
" <tr>\n",
|
858 |
+
" <th>1</th>\n",
|
859 |
+
" <td>2018-01-01 00:01:00</td>\n",
|
860 |
+
" <td>68.0</td>\n",
|
861 |
+
" <td>70.0</td>\n",
|
862 |
+
" <td>65.0</td>\n",
|
863 |
+
" <td>69.0</td>\n",
|
864 |
+
" <td>14164.429</td>\n",
|
865 |
+
" <td>14065.259</td>\n",
|
866 |
+
" <td>13592.909</td>\n",
|
867 |
+
" <td>9265.604</td>\n",
|
868 |
+
" <td>67.6</td>\n",
|
869 |
+
" <td>...</td>\n",
|
870 |
+
" <td>0.031</td>\n",
|
871 |
+
" <td>0.04</td>\n",
|
872 |
+
" <td>0.04</td>\n",
|
873 |
+
" <td>0.043</td>\n",
|
874 |
+
" <td>0.048</td>\n",
|
875 |
+
" <td>0.05</td>\n",
|
876 |
+
" <td>0.04</td>\n",
|
877 |
+
" <td>0.046</td>\n",
|
878 |
+
" <td>NaN</td>\n",
|
879 |
+
" <td>NaN</td>\n",
|
880 |
+
" </tr>\n",
|
881 |
+
" </tbody>\n",
|
882 |
+
"</table>\n",
|
883 |
+
"<p>2 rows Γ 59 columns</p>\n",
|
884 |
+
"</div>"
|
885 |
+
],
|
886 |
+
"text/plain": [
|
887 |
+
" date rtu_001_sat_sp_tn rtu_002_sat_sp_tn \\\n",
|
888 |
+
"0 2018-01-01 00:00:00 68.0 70.0 \n",
|
889 |
+
"1 2018-01-01 00:01:00 68.0 70.0 \n",
|
890 |
+
"\n",
|
891 |
+
" rtu_003_sat_sp_tn rtu_004_sat_sp_tn rtu_001_fltrd_sa_flow_tn \\\n",
|
892 |
+
"0 65.0 69.0 14131.449 \n",
|
893 |
+
"1 65.0 69.0 14164.429 \n",
|
894 |
+
"\n",
|
895 |
+
" rtu_002_fltrd_sa_flow_tn rtu_003_fltrd_sa_flow_tn \\\n",
|
896 |
+
"0 13998.757 13558.539 \n",
|
897 |
+
"1 14065.259 13592.909 \n",
|
898 |
+
"\n",
|
899 |
+
" rtu_004_fltrd_sa_flow_tn rtu_001_sa_temp ... \\\n",
|
900 |
+
"0 9265.604 67.6 ... \n",
|
901 |
+
"1 9265.604 67.6 ... \n",
|
902 |
+
"\n",
|
903 |
+
" rtu_001_fltrd_gnd_lvl_plenum_press_tn \\\n",
|
904 |
+
"0 0.030 \n",
|
905 |
+
"1 0.031 \n",
|
906 |
+
"\n",
|
907 |
+
" rtu_002_fltrd_gnd_lvl_plenum_press_tn \\\n",
|
908 |
+
"0 0.04 \n",
|
909 |
+
"1 0.04 \n",
|
910 |
+
"\n",
|
911 |
+
" rtu_003_fltrd_gnd_lvl_plenum_press_tn \\\n",
|
912 |
+
"0 0.04 \n",
|
913 |
+
"1 0.04 \n",
|
914 |
+
"\n",
|
915 |
+
" rtu_004_fltrd_gnd_lvl_plenum_press_tn rtu_001_fltrd_lvl2_plenum_press_tn \\\n",
|
916 |
+
"0 0.047 0.050 \n",
|
917 |
+
"1 0.043 0.048 \n",
|
918 |
+
"\n",
|
919 |
+
" rtu_002_fltrd_lvl2_plenum_press_tn rtu_003_fltrd_lvl2_plenum_press_tn \\\n",
|
920 |
+
"0 0.05 0.05 \n",
|
921 |
+
"1 0.05 0.04 \n",
|
922 |
+
"\n",
|
923 |
+
" rtu_004_fltrd_lvl2_plenum_press_tn hvac_N hvac_S \n",
|
924 |
+
"0 0.050 NaN NaN \n",
|
925 |
+
"1 0.046 NaN NaN \n",
|
926 |
+
"\n",
|
927 |
+
"[2 rows x 59 columns]"
|
928 |
+
]
|
929 |
+
},
|
930 |
+
"execution_count": 3,
|
931 |
+
"metadata": {},
|
932 |
+
"output_type": "execute_result"
|
933 |
+
}
|
934 |
+
],
|
935 |
+
"source": [
|
936 |
+
"zone = [\"18\", \"25\", \"26\", \"45\", \"48\", \"55\", \"56\", \"61\",\"16\", \"17\", \"21\", \"23\", \"24\", \"46\", \"47\", \"51\", \"52\", \"53\", \"54\"]\n",
|
937 |
+
"rtu = [\"rtu_001\",\"rtu_002\",\"rtu_003\",\"rtu_004\"]\n",
|
938 |
+
"wing = [\"hvac_N\",\"hvac_S\"]\n",
|
939 |
+
"# any(sub in col for sub in zone) or\n",
|
940 |
+
"energy_data = merged[[\"date\"]+[col for col in merged.columns if any(sub in col for sub in wing) or any(sub in col for sub in rtu)]]\n",
|
941 |
+
"df_filtered = energy_data[[col for col in energy_data.columns if 'Unnamed' not in col]]\n",
|
942 |
+
"df_filtered = df_filtered[[col for col in df_filtered.columns if 'co2' not in col]]\n",
|
943 |
+
"df_filtered = df_filtered[[col for col in df_filtered.columns if 'templogger' not in col]]\n",
|
944 |
+
"# df_filtered = df_filtered.dropna()\n",
|
945 |
+
"df_filtered.head(2)"
|
946 |
+
]
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"cell_type": "code",
|
950 |
+
"execution_count": 4,
|
951 |
+
"metadata": {},
|
952 |
+
"outputs": [
|
953 |
+
{
|
954 |
+
"name": "stdout",
|
955 |
+
"output_type": "stream",
|
956 |
+
"text": [
|
957 |
+
"There are NA values in the DataFrame columns.\n"
|
958 |
+
]
|
959 |
+
}
|
960 |
+
],
|
961 |
+
"source": [
|
962 |
+
"df_filtered['date'] = pd.to_datetime(df_filtered['date'], format = \"%Y-%m-%d %H:%M:%S\")\n",
|
963 |
+
"df_filtered = df_filtered[ (df_filtered.date.dt.date >date(2019, 4, 1)) & (df_filtered.date.dt.date< date(2020, 2, 15))]\n",
|
964 |
+
"# df_filtered.isna().sum()\n",
|
965 |
+
"if df_filtered.isna().any().any():\n",
|
966 |
+
" print(\"There are NA values in the DataFrame columns.\")"
|
967 |
+
]
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"cell_type": "code",
|
971 |
+
"execution_count": 5,
|
972 |
+
"metadata": {},
|
973 |
+
"outputs": [
|
974 |
+
{
|
975 |
+
"data": {
|
976 |
+
"text/plain": [
|
977 |
+
"[]"
|
978 |
+
]
|
979 |
+
},
|
980 |
+
"execution_count": 5,
|
981 |
+
"metadata": {},
|
982 |
+
"output_type": "execute_result"
|
983 |
+
}
|
984 |
+
],
|
985 |
+
"source": [
|
986 |
+
"testdataset_df = df_filtered[(df_filtered.date.dt.date <date(2019, 8, 21))]\n",
|
987 |
+
"\n",
|
988 |
+
"traindataset_df = df_filtered[ (df_filtered.date.dt.date >date(2019, 11, 8))]\n",
|
989 |
+
"\n",
|
990 |
+
"testdataset = testdataset_df.drop(columns=[\"date\"]).values\n",
|
991 |
+
"\n",
|
992 |
+
"traindataset = traindataset_df.drop(columns=[\"date\"]).values\n",
|
993 |
+
"\n",
|
994 |
+
"columns_with_na = traindataset_df.columns[traindataset_df.isna().any()].tolist()\n",
|
995 |
+
"columns_with_na"
|
996 |
+
]
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"cell_type": "code",
|
1000 |
+
"execution_count": 6,
|
1001 |
+
"metadata": {},
|
1002 |
+
"outputs": [],
|
1003 |
+
"source": [
|
1004 |
+
"traindataset = traindataset.astype('float32')\n",
|
1005 |
+
"testdataset = testdataset.astype('float32')\n",
|
1006 |
+
"\n",
|
1007 |
+
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
|
1008 |
+
"traindataset = scaler.fit_transform(traindataset)\n",
|
1009 |
+
"testdataset = scaler.transform(testdataset)"
|
1010 |
+
]
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"cell_type": "code",
|
1014 |
+
"execution_count": 7,
|
1015 |
+
"metadata": {},
|
1016 |
+
"outputs": [
|
1017 |
+
{
|
1018 |
+
"name": "stderr",
|
1019 |
+
"output_type": "stream",
|
1020 |
+
"text": [
|
1021 |
+
"c:\\Users\\jerin\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\keras\\src\\layers\\rnn\\rnn.py:205: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
|
1022 |
+
" super().__init__(**kwargs)\n"
|
1023 |
+
]
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"name": "stdout",
|
1027 |
+
"output_type": "stream",
|
1028 |
+
"text": [
|
1029 |
+
"Epoch 1/15\n",
|
1030 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 0.0038\n",
|
1031 |
+
"Epoch 1: val_loss improved from inf to 0.00894, saving model to lstm3.keras\n",
|
1032 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m144s\u001b[0m 44ms/step - loss: 0.0038 - val_loss: 0.0089\n",
|
1033 |
+
"Epoch 2/15\n",
|
1034 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step - loss: 5.4854e-04\n",
|
1035 |
+
"Epoch 2: val_loss improved from 0.00894 to 0.00529, saving model to lstm3.keras\n",
|
1036 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 43ms/step - loss: 5.4854e-04 - val_loss: 0.0053\n",
|
1037 |
+
"Epoch 3/15\n",
|
1038 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 5.0405e-04\n",
|
1039 |
+
"Epoch 3: val_loss did not improve from 0.00529\n",
|
1040 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m129s\u001b[0m 40ms/step - loss: 5.0405e-04 - val_loss: 0.0063\n",
|
1041 |
+
"Epoch 4/15\n",
|
1042 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 4.9573e-04\n",
|
1043 |
+
"Epoch 4: val_loss did not improve from 0.00529\n",
|
1044 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m131s\u001b[0m 41ms/step - loss: 4.9572e-04 - val_loss: 0.0061\n",
|
1045 |
+
"Epoch 5/15\n",
|
1046 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - loss: 4.9666e-04\n",
|
1047 |
+
"Epoch 5: val_loss did not improve from 0.00529\n",
|
1048 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m135s\u001b[0m 42ms/step - loss: 4.9665e-04 - val_loss: 0.0058\n",
|
1049 |
+
"Epoch 6/15\n",
|
1050 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 4.7853e-04\n",
|
1051 |
+
"Epoch 6: val_loss improved from 0.00529 to 0.00512, saving model to lstm3.keras\n",
|
1052 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m129s\u001b[0m 40ms/step - loss: 4.7852e-04 - val_loss: 0.0051\n",
|
1053 |
+
"Epoch 7/15\n",
|
1054 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - loss: 4.3858e-04\n",
|
1055 |
+
"Epoch 7: val_loss improved from 0.00512 to 0.00386, saving model to lstm3.keras\n",
|
1056 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m129s\u001b[0m 40ms/step - loss: 4.3859e-04 - val_loss: 0.0039\n",
|
1057 |
+
"Epoch 8/15\n",
|
1058 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 4.4643e-04\n",
|
1059 |
+
"Epoch 8: val_loss improved from 0.00386 to 0.00321, saving model to lstm3.keras\n",
|
1060 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m129s\u001b[0m 40ms/step - loss: 4.4643e-04 - val_loss: 0.0032\n",
|
1061 |
+
"Epoch 9/15\n",
|
1062 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 4.3562e-04\n",
|
1063 |
+
"Epoch 9: val_loss improved from 0.00321 to 0.00267, saving model to lstm3.keras\n",
|
1064 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m130s\u001b[0m 40ms/step - loss: 4.3562e-04 - val_loss: 0.0027\n",
|
1065 |
+
"Epoch 10/15\n",
|
1066 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 4.3336e-04\n",
|
1067 |
+
"Epoch 10: val_loss did not improve from 0.00267\n",
|
1068 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m130s\u001b[0m 40ms/step - loss: 4.3336e-04 - val_loss: 0.0029\n",
|
1069 |
+
"Epoch 11/15\n",
|
1070 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 4.2932e-04\n",
|
1071 |
+
"Epoch 11: val_loss did not improve from 0.00267\n",
|
1072 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m130s\u001b[0m 40ms/step - loss: 4.2932e-04 - val_loss: 0.0032\n",
|
1073 |
+
"Epoch 12/15\n",
|
1074 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mβββββββββοΏ½οΏ½οΏ½ββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 4.1954e-04\n",
|
1075 |
+
"Epoch 12: val_loss improved from 0.00267 to 0.00248, saving model to lstm3.keras\n",
|
1076 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m128s\u001b[0m 40ms/step - loss: 4.1954e-04 - val_loss: 0.0025\n",
|
1077 |
+
"Epoch 13/15\n",
|
1078 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - loss: 4.2671e-04\n",
|
1079 |
+
"Epoch 13: val_loss improved from 0.00248 to 0.00245, saving model to lstm3.keras\n",
|
1080 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m130s\u001b[0m 40ms/step - loss: 4.2671e-04 - val_loss: 0.0024\n",
|
1081 |
+
"Epoch 14/15\n",
|
1082 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 4.1718e-04\n",
|
1083 |
+
"Epoch 14: val_loss did not improve from 0.00245\n",
|
1084 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m129s\u001b[0m 40ms/step - loss: 4.1717e-04 - val_loss: 0.0031\n",
|
1085 |
+
"Epoch 15/15\n",
|
1086 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 4.0550e-04\n",
|
1087 |
+
"Epoch 15: val_loss did not improve from 0.00245\n",
|
1088 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m129s\u001b[0m 40ms/step - loss: 4.0550e-04 - val_loss: 0.0025\n"
|
1089 |
+
]
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"data": {
|
1093 |
+
"text/plain": [
|
1094 |
+
"<keras.src.callbacks.history.History at 0x1fc4b1aecd0>"
|
1095 |
+
]
|
1096 |
+
},
|
1097 |
+
"execution_count": 7,
|
1098 |
+
"metadata": {},
|
1099 |
+
"output_type": "execute_result"
|
1100 |
+
}
|
1101 |
+
],
|
1102 |
+
"source": [
|
1103 |
+
"train,test = traindataset,testdataset\n",
|
1104 |
+
"\n",
|
1105 |
+
"def create_dataset(dataset,time_step):\n",
|
1106 |
+
" x = [[] for _ in range(58)] \n",
|
1107 |
+
" Y = []\n",
|
1108 |
+
" for i in range(len(dataset) - time_step - 1):\n",
|
1109 |
+
" for j in range(58):\n",
|
1110 |
+
" x[j].append(dataset[i:(i + time_step), j])\n",
|
1111 |
+
" Y.append([dataset[i + time_step, 56],dataset[i + time_step, 57]])\n",
|
1112 |
+
" x= [np.array(feature_list) for feature_list in x]\n",
|
1113 |
+
" Y = np.reshape(Y,(len(Y),2))\n",
|
1114 |
+
" return np.stack(x,axis=2),Y\n",
|
1115 |
+
"\n",
|
1116 |
+
"time_step = 60\n",
|
1117 |
+
"X_train, y_train = create_dataset(train, time_step)\n",
|
1118 |
+
"X_test, y_test = create_dataset(test, time_step)\n",
|
1119 |
+
"\n",
|
1120 |
+
"\n",
|
1121 |
+
"model = Sequential()\n",
|
1122 |
+
"model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))\n",
|
1123 |
+
"model.add(LSTM(units=50, return_sequences=True))\n",
|
1124 |
+
"model.add(LSTM(units=50))\n",
|
1125 |
+
"model.add(Dense(units=2))\n",
|
1126 |
+
"\n",
|
1127 |
+
"model.compile(optimizer='adam', loss='mean_squared_error')\n",
|
1128 |
+
"\n",
|
1129 |
+
"checkpoint_path = \"lstm3.keras\"\n",
|
1130 |
+
"checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
|
1131 |
+
"model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=15, batch_size=64, verbose=1, callbacks=[checkpoint_callback])\n"
|
1132 |
+
]
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"cell_type": "code",
|
1136 |
+
"execution_count": 39,
|
1137 |
+
"metadata": {},
|
1138 |
+
"outputs": [
|
1139 |
+
{
|
1140 |
+
"name": "stdout",
|
1141 |
+
"output_type": "stream",
|
1142 |
+
"text": [
|
1143 |
+
"Epoch 1/10\n",
|
1144 |
+
"\u001b[1m3218/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0050\n",
|
1145 |
+
"Epoch 1: val_loss improved from inf to 0.03991, saving model to lstm3.keras\n",
|
1146 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m68s\u001b[0m 21ms/step - loss: 0.0050 - val_loss: 0.0399\n",
|
1147 |
+
"Epoch 2/10\n",
|
1148 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0050\n",
|
1149 |
+
"Epoch 2: val_loss did not improve from 0.03991\n",
|
1150 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m67s\u001b[0m 21ms/step - loss: 0.0050 - val_loss: 0.0480\n",
|
1151 |
+
"Epoch 3/10\n",
|
1152 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0048\n",
|
1153 |
+
"Epoch 3: val_loss did not improve from 0.03991\n",
|
1154 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββοΏ½οΏ½β\u001b[0m\u001b[37m\u001b[0m \u001b[1m67s\u001b[0m 21ms/step - loss: 0.0048 - val_loss: 0.0474\n",
|
1155 |
+
"Epoch 4/10\n",
|
1156 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0047\n",
|
1157 |
+
"Epoch 4: val_loss did not improve from 0.03991\n",
|
1158 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m68s\u001b[0m 21ms/step - loss: 0.0047 - val_loss: 0.0492\n",
|
1159 |
+
"Epoch 5/10\n",
|
1160 |
+
"\u001b[1m3217/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0048\n",
|
1161 |
+
"Epoch 5: val_loss improved from 0.03991 to 0.03753, saving model to lstm3.keras\n",
|
1162 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m68s\u001b[0m 21ms/step - loss: 0.0048 - val_loss: 0.0375\n",
|
1163 |
+
"Epoch 6/10\n",
|
1164 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0046\n",
|
1165 |
+
"Epoch 6: val_loss did not improve from 0.03753\n",
|
1166 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m68s\u001b[0m 21ms/step - loss: 0.0046 - val_loss: 0.0466\n",
|
1167 |
+
"Epoch 7/10\n",
|
1168 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0043\n",
|
1169 |
+
"Epoch 7: val_loss did not improve from 0.03753\n",
|
1170 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m67s\u001b[0m 21ms/step - loss: 0.0043 - val_loss: 0.0499\n",
|
1171 |
+
"Epoch 8/10\n",
|
1172 |
+
"\u001b[1m3219/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0043\n",
|
1173 |
+
"Epoch 8: val_loss did not improve from 0.03753\n",
|
1174 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m68s\u001b[0m 21ms/step - loss: 0.0043 - val_loss: 0.0483\n",
|
1175 |
+
"Epoch 9/10\n",
|
1176 |
+
"\u001b[1m3218/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0042\n",
|
1177 |
+
"Epoch 9: val_loss did not improve from 0.03753\n",
|
1178 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m69s\u001b[0m 22ms/step - loss: 0.0042 - val_loss: 0.0559\n",
|
1179 |
+
"Epoch 10/10\n",
|
1180 |
+
"\u001b[1m3218/3220\u001b[0m \u001b[32mβββββββββββββββββββ\u001b[0m\u001b[37mβ\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0044\n",
|
1181 |
+
"Epoch 10: val_loss did not improve from 0.03753\n",
|
1182 |
+
"\u001b[1m3220/3220\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m68s\u001b[0m 21ms/step - loss: 0.0044 - val_loss: 0.0470\n"
|
1183 |
+
]
|
1184 |
+
},
|
1185 |
+
{
|
1186 |
+
"data": {
|
1187 |
+
"text/plain": [
|
1188 |
+
"<keras.src.callbacks.history.History at 0x153b37086d0>"
|
1189 |
+
]
|
1190 |
+
},
|
1191 |
+
"execution_count": 39,
|
1192 |
+
"metadata": {},
|
1193 |
+
"output_type": "execute_result"
|
1194 |
+
}
|
1195 |
+
],
|
1196 |
+
"source": [
|
1197 |
+
"checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
|
1198 |
+
"model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=64, verbose=1, callbacks=[checkpoint_callback])"
|
1199 |
+
]
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"cell_type": "code",
|
1203 |
+
"execution_count": 8,
|
1204 |
+
"metadata": {},
|
1205 |
+
"outputs": [
|
1206 |
+
{
|
1207 |
+
"name": "stdout",
|
1208 |
+
"output_type": "stream",
|
1209 |
+
"text": [
|
1210 |
+
"\u001b[1m6344/6344\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m47s\u001b[0m 7ms/step\n"
|
1211 |
+
]
|
1212 |
+
}
|
1213 |
+
],
|
1214 |
+
"source": [
|
1215 |
+
"test_predict1 = model.predict(X_test)\n",
|
1216 |
+
"# train_predict1 = model.predict(X_train)"
|
1217 |
+
]
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"cell_type": "code",
|
1221 |
+
"execution_count": 10,
|
1222 |
+
"metadata": {},
|
1223 |
+
"outputs": [],
|
1224 |
+
"source": [
|
1225 |
+
"%matplotlib qt\n",
|
1226 |
+
"var = 0\n",
|
1227 |
+
"plt.plot(testdataset_df['date'][61:],y_test[:,0], label='Original Testing Data', color='blue')\n",
|
1228 |
+
"plt.plot(testdataset_df['date'][61:],test_predict1[:,0], label='Predicted Testing Data', color='red',alpha=0.8)\n",
|
1229 |
+
"# anomalies = np.where(abs(test_predict[:,var] - y_test[:,var]) > 0.38)[0]\n",
|
1230 |
+
"# plt.scatter(anomalies,test_predict[anomalies,var], color='black',marker =\"o\",s=100 )\n",
|
1231 |
+
"\n",
|
1232 |
+
"\n",
|
1233 |
+
"plt.title('Testing Data - Predicted vs Actual')\n",
|
1234 |
+
"plt.xlabel('Time')\n",
|
1235 |
+
"plt.ylabel('Value')\n",
|
1236 |
+
"plt.legend()\n",
|
1237 |
+
"plt.show()"
|
1238 |
+
]
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"cell_type": "code",
|
1242 |
+
"execution_count": 11,
|
1243 |
+
"metadata": {},
|
1244 |
+
"outputs": [
|
1245 |
+
{
|
1246 |
+
"name": "stderr",
|
1247 |
+
"output_type": "stream",
|
1248 |
+
"text": [
|
1249 |
+
"WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
|
1250 |
+
]
|
1251 |
+
}
|
1252 |
+
],
|
1253 |
+
"source": [
|
1254 |
+
"from tensorflow.keras.models import load_model\n",
|
1255 |
+
"model.save(\"energy_model.h5\") "
|
1256 |
+
]
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"cell_type": "code",
|
1260 |
+
"execution_count": 8,
|
1261 |
+
"metadata": {},
|
1262 |
+
"outputs": [
|
1263 |
+
{
|
1264 |
+
"data": {
|
1265 |
+
"text/plain": [
|
1266 |
+
"[<matplotlib.lines.Line2D at 0x152fd38cd10>]"
|
1267 |
+
]
|
1268 |
+
},
|
1269 |
+
"execution_count": 8,
|
1270 |
+
"metadata": {},
|
1271 |
+
"output_type": "execute_result"
|
1272 |
+
}
|
1273 |
+
],
|
1274 |
+
"source": [
|
1275 |
+
"%matplotlib qt\n",
|
1276 |
+
"plt.plot(df_filtered['date'],df_filtered['hvac_S'])\n",
|
1277 |
+
"plt.plot(df_filtered['date'],df_filtered['rtu_003_sf_vfd_spd_fbk_tn'])\n",
|
1278 |
+
"plt.plot(df_filtered['date'],df_filtered['zone_025_temp'])"
|
1279 |
+
]
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"cell_type": "code",
|
1283 |
+
"execution_count": null,
|
1284 |
+
"metadata": {},
|
1285 |
+
"outputs": [],
|
1286 |
+
"source": []
|
1287 |
+
}
|
1288 |
+
],
|
1289 |
+
"metadata": {
|
1290 |
+
"kernelspec": {
|
1291 |
+
"display_name": "smartbuilding",
|
1292 |
+
"language": "python",
|
1293 |
+
"name": "python3"
|
1294 |
+
},
|
1295 |
+
"language_info": {
|
1296 |
+
"codemirror_mode": {
|
1297 |
+
"name": "ipython",
|
1298 |
+
"version": 3
|
1299 |
+
},
|
1300 |
+
"file_extension": ".py",
|
1301 |
+
"mimetype": "text/x-python",
|
1302 |
+
"name": "python",
|
1303 |
+
"nbconvert_exporter": "python",
|
1304 |
+
"pygments_lexer": "ipython3",
|
1305 |
+
"version": "3.11.8"
|
1306 |
+
}
|
1307 |
+
},
|
1308 |
+
"nbformat": 4,
|
1309 |
+
"nbformat_minor": 2
|
1310 |
+
}
|