import numpy as np from tensorflow.keras.models import load_model import joblib class RTUAnomalizer2: """ Class for performing anomaly detection on RTU (Roof Top Unit) data. """ model = None kmeans_models = [] def __init__( self, prediction_model_path=None, clustering_model_paths=None, num_inputs=None, num_outputs=None, ): """ Initialize the RTUAnomalizer object. Args: prediction_model_path (str): Path to the prediction model file. clustering_model_paths (list): List of paths to the clustering model files. num_inputs (int): Number of input features. num_outputs (int): Number of output features. """ self.num_inputs = num_inputs self.num_outputs = num_outputs if prediction_model_path is not None and clustering_model_paths is not None: self.load_models(prediction_model_path, clustering_model_paths) self.actual_list, self.pred_list, self.resid_list = self.initialize_lists() def initialize_lists(self, size=30): """ Initialize lists for storing actual, predicted, and residual values. Args: size (int): Size of the lists. Returns: tuple: A tuple containing three lists initialized with zeros. """ initial_values = [[0]*self.num_outputs] * size return initial_values.copy(), initial_values.copy(), initial_values.copy() def load_models(self, prediction_model_path, clustering_model_paths): """ Load the prediction and clustering models. Args: prediction_model_path (str): Path to the prediction model file. clustering_model_paths (list): List of paths to the clustering model files. """ self.model = load_model(prediction_model_path) for path in clustering_model_paths: self.kmeans_models.append(joblib.load(path)) def predict(self, df_new): """ Make predictions using the prediction model. Args: df_new (DataFrame): Input data for prediction. Returns: array: Predicted values. """ return self.model.predict(df_new,verbose=0) def calculate_residuals(self, df_trans, pred): """ Calculate the residuals between actual and predicted values. Args: df_trans (DataFrame): Transformed input data. pred (array): Predicted values. Returns: tuple: A tuple containing the actual values and residuals. """ actual = df_trans[30, : self.num_outputs] resid = actual - pred return actual, resid def resize_prediction(self, pred, df_trans): """ Resize the predicted values to match the shape of the transformed input data. Args: pred (array): Predicted values. df_trans (DataFrame): Transformed input data. Returns: array: Resized predicted values. """ pred = np.resize( pred, (pred.shape[0], pred.shape[1] + len(df_trans[30, self.num_outputs :])) ) pred[:, -len(df_trans[30, self.num_outputs :]) :] = df_trans[ 30, self.num_outputs : ] return pred def inverse_transform(self, scaler, pred, df_trans): """ Inverse transform the predicted and actual values. Args: scaler (object): Scaler object for inverse transformation. pred (array): Predicted values. df_trans (DataFrame): Transformed input data. Returns: tuple: A tuple containing the actual and predicted values after inverse transformation. """ pred = scaler.inverse_transform(np.array(pred)) actual = scaler.inverse_transform(np.array([df_trans[30, :]])) return actual, pred def update_lists(self, actual, pred, resid): """ Update the lists of actual, predicted, and residual values. Args: actual_list (list): List of actual values. pred_list (list): List of predicted values. resid_list (list): List of residual values. actual (array): Actual values. pred (array): Predicted values. resid (array): Residual values. Returns: tuple: A tuple containing the updated lists of actual, predicted, and residual values. """ self.actual_list.pop(0) self.pred_list.pop(0) self.resid_list.pop(0) self.actual_list.append(actual.flatten().tolist()) self.pred_list.append(pred.flatten().tolist()) self.resid_list.append(resid.flatten().tolist()) return self.actual_list, self.pred_list, self.resid_list def calculate_distances(self, resid): """ Calculate the distances between residuals and cluster centers. Args: resid (array): Residual values. Returns: array: Array of distances. """ dist = [] for i, model in enumerate(self.kmeans_models): dist.append( np.linalg.norm( resid[:, (i * 7) + 1 : (i * 7) + 8] - model.cluster_centers_[0], ord=2, axis=1, ) ) return np.array(dist) def pipeline(self, df_new, df_trans, scaler): """ Perform the anomaly detection pipeline. Args: df_new (DataFrame): Input data for prediction. df_trans (DataFrame): Transformed input data. scaler (object): Scaler object for inverse transformation. Returns: tuple: A tuple containing the lists of actual, predicted, and residual values, and the distances. """ pred = self.predict(df_new) actual, resid = self.calculate_residuals(df_trans, pred) pred = self.resize_prediction(pred, df_trans) actual, pred = self.inverse_transform(scaler, pred, df_trans) actual_list, pred_list, resid_list = self.update_lists( actual, pred, resid) dist = self.calculate_distances(resid) return actual_list, pred_list, resid_list, dist