import json import joblib import pandas as pd from sklearn.preprocessing import StandardScaler from pickle import load import numpy as np class RTUPipeline: scaler = None def __init__(self, rtus=[1, 2], scaler_path=None): outputs = [ "sa_temp", "oadmpr_pct", "ra_temp", "oa_temp", "ma_temp", "sf_vfd_spd_fbk_tn", "rf_vfd_spd_fbk_tn", ] self.output_col_names = [ "hp_hws_temp", ] for rtu in rtus: for output in outputs: self.output_col_names.append(f"rtu_00{rtu}_{output}") self.input_col_names = [ "air_temp_set_1", "air_temp_set_2", "dew_point_temperature_set_1d", "relative_humidity_set_1", "solar_radiation_set_1", ] self.num_inputs = len(self.input_col_names) self.num_outputs = len(self.output_col_names) self.column_names = self.output_col_names + self.input_col_names if scaler_path: self.scaler = self.get_scaler(scaler_path) self.df = pd.DataFrame(columns=self.column_names) def get_scaler(self, scaler_path): return joblib.load(scaler_path) def get_window(self, df): len_df = len(df) if len_df > 30: return df[len_df - 31 : len_df].astype("float32") else: return None def transform_window(self, df_window): return self.scaler.transform(df_window) def prepare_input(self, df_trans): return df_trans[:30, :].reshape((1, 30, len(self.column_names))) def extract_data_from_message(self, message): payload = json.loads(message.payload.decode()) len_df = len(self.df) k = {} for col in self.column_names: k[col] = payload[col] self.df.loc[len_df] = k return self.df def fit(self, message): df = self.extract_data_from_message(message) df_window = self.get_window(df) if df_window is not None: df_trans = self.transform_window(df_window) df_new = self.prepare_input(df_trans) else: df_new = None df_trans = None return df_new, df_trans