File size: 9,920 Bytes
336094b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2d5eb3
 
336094b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f3bdc
 
 
336094b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import spaces
import gradio as gr
import time
import torch
import numpy as np

from tqdm.auto import tqdm
from torchvision import transforms as tfms
from PIL import Image
from segment_utils import(
    segment_image,
    restore_result,
)
from diffusers import (
    StableDiffusionPipeline,
    DDIMScheduler,
)

# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

DEFAULT_INPUT_PROMPT = "a woman"
DEFAULT_EDIT_PROMPT = "a woman with linen-blonde-hair"

DEFAULT_CATEGORY = "hair"

basepipeline = StableDiffusionPipeline.from_pretrained(
    BASE_MODEL,
    torch_dtype=torch.float16,
    use_safetensors=True,
)

basepipeline.scheduler = DDIMScheduler.from_config(basepipeline.scheduler.config)

basepipeline = basepipeline.to(DEVICE)

basepipeline.enable_model_cpu_offload()

@spaces.GPU(duration=30)
def image_to_image(
    input_image: Image,
    input_image_prompt: str,
    edit_prompt: str,
    num_steps: int,
    start_step: int,
    guidance_scale: float,
):
    run_task_time = 0
    time_cost_str = ''
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

    with torch.no_grad():
        input_image_tensor = tfms.functional.to_tensor(input_image).unsqueeze(0).to(DEVICE)
        input_image_tensor = input_image_tensor.to(dtype=torch.float16)
        latent = basepipeline.vae.encode(input_image_tensor * 2 - 1)
    l = 0.18215 * latent.latent_dist.sample()
    inverted_latents = invert(l, input_image_prompt, num_inference_steps=num_steps)
    generated_image = sample(
        edit_prompt,
        start_latents=inverted_latents[-(start_step + 1)][None],
        start_step=start_step,
        num_inference_steps=num_steps,
        guidance_scale=guidance_scale,
    )[0]
    
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

    return generated_image, time_cost_str

def make_inpaint_condition(image, image_mask):
    image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
    image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0

    assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
    image[image_mask > 0.5] = -1.0  # set as masked pixel
    image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return image

## Inversion
@torch.no_grad()
def invert(
    start_latents,
    prompt,
    guidance_scale=3.5,
    num_inference_steps=80,
    num_images_per_prompt=1,
    do_classifier_free_guidance=True,
    negative_prompt="",
    device=DEVICE,
):

    # Encode prompt
    text_embeddings = basepipeline._encode_prompt(
        prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
    )

    # Latents are now the specified start latents
    latents = start_latents.clone()

    # We'll keep a list of the inverted latents as the process goes on
    intermediate_latents = []

    # Set num inference steps
    basepipeline.scheduler.set_timesteps(num_inference_steps, device=device)

    # Reversed timesteps <<<<<<<<<<<<<<<<<<<<
    timesteps = reversed(basepipeline.scheduler.timesteps)

    for i in tqdm(range(1, num_inference_steps), total=num_inference_steps - 1):

        # We'll skip the final iteration
        if i >= num_inference_steps - 1:
            continue

        t = timesteps[i]

        # Expand the latents if we are doing classifier free guidance
        latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
        latent_model_input = basepipeline.scheduler.scale_model_input(latent_model_input, t)

        # Predict the noise residual
        noise_pred = basepipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

        # Perform guidance
        if do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        current_t = max(0, t.item() - (1000 // num_inference_steps))  # t
        next_t = t  # min(999, t.item() + (1000//num_inference_steps)) # t+1
        alpha_t = basepipeline.scheduler.alphas_cumprod[current_t]
        alpha_t_next = basepipeline.scheduler.alphas_cumprod[next_t]

        # Inverted update step (re-arranging the update step to get x(t) (new latents) as a function of x(t-1) (current latents)
        latents = (latents - (1 - alpha_t).sqrt() * noise_pred) * (alpha_t_next.sqrt() / alpha_t.sqrt()) + (
            1 - alpha_t_next
        ).sqrt() * noise_pred

        # Store
        intermediate_latents.append(latents)

    return torch.cat(intermediate_latents)

# Sample function (regular DDIM)
@torch.no_grad()
def sample(
    prompt,
    start_step=0,
    start_latents=None,
    guidance_scale=3.5,
    num_inference_steps=30,
    num_images_per_prompt=1,
    do_classifier_free_guidance=True,
    negative_prompt="",
    device=DEVICE,
):

    # Encode prompt
    text_embeddings = basepipeline._encode_prompt(
        prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
    )

    # Set num inference steps
    basepipeline.scheduler.set_timesteps(num_inference_steps, device=device)

    # Create a random starting point if we don't have one already
    if start_latents is None:
        start_latents = torch.randn(1, 4, 64, 64, device=device)
        start_latents *= basepipeline.scheduler.init_noise_sigma

    latents = start_latents.clone()

    for i in tqdm(range(start_step, num_inference_steps)):

        t = basepipeline.scheduler.timesteps[i]

        # Expand the latents if we are doing classifier free guidance
        latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
        latent_model_input = basepipeline.scheduler.scale_model_input(latent_model_input, t)

        # Predict the noise residual
        noise_pred = basepipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

        # Perform guidance
        if do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        # Normally we'd rely on the scheduler to handle the update step:
        # latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample

        # Instead, let's do it ourselves:
        prev_t = max(1, t.item() - (1000 // num_inference_steps))  # t-1
        alpha_t = basepipeline.scheduler.alphas_cumprod[t.item()]
        alpha_t_prev = basepipeline.scheduler.alphas_cumprod[prev_t]
        predicted_x0 = (latents - (1 - alpha_t).sqrt() * noise_pred) / alpha_t.sqrt()
        direction_pointing_to_xt = (1 - alpha_t_prev).sqrt() * noise_pred
        latents = alpha_t_prev.sqrt() * predicted_x0 + direction_pointing_to_xt

    # Post-processing
    images = basepipeline.decode_latents(latents)
    images = basepipeline.numpy_to_pil(images)

    return images

def get_time_cost(run_task_time, time_cost_str):
    now_time = int(time.time()*1000)
    if run_task_time == 0:
        time_cost_str = 'start'
    else:
        if time_cost_str != '': 
            time_cost_str += f'-->'
        time_cost_str += f'{now_time - run_task_time}'
    run_task_time = now_time
    return run_task_time, time_cost_str

def create_demo() -> gr.Blocks:
    with gr.Blocks() as demo:
        croper = gr.State()
        with gr.Row():
            with gr.Column():
                input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_INPUT_PROMPT)
                edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
            with gr.Column():
                num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
                start_step = gr.Slider(minimum=0, maximum=100, value=15, step=1, label="Start Step")
                guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
            with gr.Column():
                generate_size = gr.Number(label="Generate Size", value=512)
                with gr.Accordion("Advanced Options", open=False):
                    mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
                    mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
                    category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
                g_btn = gr.Button("Edit Image")
                
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", type="pil")
            with gr.Column():
                restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
            with gr.Column():
                origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
                generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
                generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
        
        g_btn.click(
            fn=segment_image,
            inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
            outputs=[origin_area_image, croper],
        ).success(
            fn=image_to_image,
            inputs=[origin_area_image, input_image_prompt, edit_prompt, num_steps, start_step, guidance_scale],
            outputs=[generated_image, generated_cost],
        ).success(
            fn=restore_result,
            inputs=[croper, category, generated_image],
            outputs=[restored_image],
        )

    return demo