Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,957 Bytes
336094b e2d5eb3 7a7ec30 336094b a823397 336094b 61f3bdc 336094b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import spaces
import gradio as gr
import time
import torch
import numpy as np
from tqdm.auto import tqdm
from torchvision import transforms as tfms
from PIL import Image
from segment_utils import(
segment_image,
restore_result,
)
from diffusers import (
StableDiffusionPipeline,
DDIMScheduler,
)
# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
# BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
BASE_MODEL = "Lykon/DreamShaper"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DEFAULT_INPUT_PROMPT = "a woman"
DEFAULT_EDIT_PROMPT = "a woman with linen-blonde-hair"
DEFAULT_CATEGORY = "hair"
basepipeline = StableDiffusionPipeline.from_pretrained(
BASE_MODEL,
torch_dtype=torch.float16,
# use_safetensors=True,
)
basepipeline.scheduler = DDIMScheduler.from_config(basepipeline.scheduler.config)
basepipeline = basepipeline.to(DEVICE)
basepipeline.enable_model_cpu_offload()
@spaces.GPU(duration=30)
def image_to_image(
input_image: Image,
input_image_prompt: str,
edit_prompt: str,
num_steps: int,
start_step: int,
guidance_scale: float,
):
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
with torch.no_grad():
input_image_tensor = tfms.functional.to_tensor(input_image).unsqueeze(0).to(DEVICE)
input_image_tensor = input_image_tensor.to(dtype=torch.float16)
latent = basepipeline.vae.encode(input_image_tensor * 2 - 1)
l = 0.18215 * latent.latent_dist.sample()
inverted_latents = invert(l, input_image_prompt, num_inference_steps=num_steps)
generated_image = sample(
edit_prompt,
start_latents=inverted_latents[-(start_step + 1)][None],
start_step=start_step,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
)[0]
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return generated_image, time_cost_str
def make_inpaint_condition(image, image_mask):
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
image[image_mask > 0.5] = -1.0 # set as masked pixel
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
## Inversion
@torch.no_grad()
def invert(
start_latents,
prompt,
guidance_scale=3.5,
num_inference_steps=80,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt="",
device=DEVICE,
):
# Encode prompt
text_embeddings = basepipeline._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# Latents are now the specified start latents
latents = start_latents.clone()
# We'll keep a list of the inverted latents as the process goes on
intermediate_latents = []
# Set num inference steps
basepipeline.scheduler.set_timesteps(num_inference_steps, device=device)
# Reversed timesteps <<<<<<<<<<<<<<<<<<<<
timesteps = reversed(basepipeline.scheduler.timesteps)
for i in tqdm(range(1, num_inference_steps), total=num_inference_steps - 1):
# We'll skip the final iteration
if i >= num_inference_steps - 1:
continue
t = timesteps[i]
# Expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = basepipeline.scheduler.scale_model_input(latent_model_input, t)
# Predict the noise residual
noise_pred = basepipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# Perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
current_t = max(0, t.item() - (1000 // num_inference_steps)) # t
next_t = t # min(999, t.item() + (1000//num_inference_steps)) # t+1
alpha_t = basepipeline.scheduler.alphas_cumprod[current_t]
alpha_t_next = basepipeline.scheduler.alphas_cumprod[next_t]
# Inverted update step (re-arranging the update step to get x(t) (new latents) as a function of x(t-1) (current latents)
latents = (latents - (1 - alpha_t).sqrt() * noise_pred) * (alpha_t_next.sqrt() / alpha_t.sqrt()) + (
1 - alpha_t_next
).sqrt() * noise_pred
# Store
intermediate_latents.append(latents)
return torch.cat(intermediate_latents)
# Sample function (regular DDIM)
@torch.no_grad()
def sample(
prompt,
start_step=0,
start_latents=None,
guidance_scale=3.5,
num_inference_steps=30,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt="",
device=DEVICE,
):
# Encode prompt
text_embeddings = basepipeline._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# Set num inference steps
basepipeline.scheduler.set_timesteps(num_inference_steps, device=device)
# Create a random starting point if we don't have one already
if start_latents is None:
start_latents = torch.randn(1, 4, 64, 64, device=device)
start_latents *= basepipeline.scheduler.init_noise_sigma
latents = start_latents.clone()
for i in tqdm(range(start_step, num_inference_steps)):
t = basepipeline.scheduler.timesteps[i]
# Expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = basepipeline.scheduler.scale_model_input(latent_model_input, t)
# Predict the noise residual
noise_pred = basepipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# Perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# Normally we'd rely on the scheduler to handle the update step:
# latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample
# Instead, let's do it ourselves:
prev_t = max(1, t.item() - (1000 // num_inference_steps)) # t-1
alpha_t = basepipeline.scheduler.alphas_cumprod[t.item()]
alpha_t_prev = basepipeline.scheduler.alphas_cumprod[prev_t]
predicted_x0 = (latents - (1 - alpha_t).sqrt() * noise_pred) / alpha_t.sqrt()
direction_pointing_to_xt = (1 - alpha_t_prev).sqrt() * noise_pred
latents = alpha_t_prev.sqrt() * predicted_x0 + direction_pointing_to_xt
# Post-processing
images = basepipeline.decode_latents(latents)
images = basepipeline.numpy_to_pil(images)
return images
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
def create_demo() -> gr.Blocks:
with gr.Blocks() as demo:
croper = gr.State()
with gr.Row():
with gr.Column():
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_INPUT_PROMPT)
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
start_step = gr.Slider(minimum=0, maximum=100, value=15, step=1, label="Start Step")
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
with gr.Column():
generate_size = gr.Number(label="Generate Size", value=512)
with gr.Accordion("Advanced Options", open=False):
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
g_btn = gr.Button("Edit Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Column():
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
with gr.Column():
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
g_btn.click(
fn=segment_image,
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
outputs=[origin_area_image, croper],
).success(
fn=image_to_image,
inputs=[origin_area_image, input_image_prompt, edit_prompt, num_steps, start_step, guidance_scale],
outputs=[generated_image, generated_cost],
).success(
fn=restore_result,
inputs=[croper, category, generated_image],
outputs=[restored_image],
)
return demo |