Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,100 Bytes
ff0aba3 7688f40 ff0aba3 7688f40 23086f0 ff0aba3 7688f40 ff0aba3 5c43d2c ff0aba3 c22253e ff0aba3 ff1a4e2 ff0aba3 23086f0 ff0aba3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import spaces
import gradio as gr
import time
import torch
from PIL import Image
from segment_utils import(
segment_image_withmask,
restore_result,
)
from diffusers import (
DiffusionPipeline,
AutoencoderKL,
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
BASE_MODEL = "RunDiffusion/Juggernaut-XL-v9"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DEFAULT_EDIT_PROMPT = "a woman with linen-blonde-hair"
DEFAULT_NEGATIVE_PROMPT = "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting, poorly drawn face, bad face, fused face, ugly face, worst face, asymmetrical, unrealistic skin texture, bad proportions, out of frame, poorly drawn hands, cloned face, double face"
DEFAULT_CATEGORY = "hair"
basepipeline = DiffusionPipeline.from_pretrained(
BASE_MODEL,
vae=vae,
torch_dtype=torch.float16,
# use_safetensors=True,
custom_pipeline="./pipelines/masked_stable_diffusion_xl_img2img.py",
variant="fp16",
)
basepipeline = basepipeline.to(DEVICE)
basepipeline.enable_model_cpu_offload()
@spaces.GPU(duration=30)
def image_to_image(
input_image: Image,
mask_image: Image,
edit_prompt: str,
seed: int,
num_steps: int,
guidance_scale: float,
generate_size: int,
blur: int,
strength: float,
):
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
generated_image = basepipeline(
generator=generator,
prompt=edit_prompt,
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
original_image=input_image,
mask=mask_image,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
blur=blur,
strength=strength,
).images[0]
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return generated_image, time_cost_str
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
def create_demo() -> gr.Blocks:
with gr.Blocks() as demo:
croper = gr.State()
with gr.Row():
with gr.Column():
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
generate_size = gr.Number(label="Generate Size", value=512)
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
with gr.Column():
with gr.Accordion("Advanced Options", open=False):
blur = gr.Slider(minimum=0, maximum=100, value=48, step=1, label="Blur")
strength = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.1, label="Strength")
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
seed = gr.Number(label="Seed", value=8)
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
g_btn = gr.Button("Edit Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Column():
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
with gr.Column():
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
mask_image = gr.Image(label="Mask Image", type="pil", interactive=False)
g_btn.click(
fn=segment_image_withmask,
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
outputs=[origin_area_image, mask_image, croper],
).success(
fn=image_to_image,
inputs=[origin_area_image, mask_image, edit_prompt,seed, num_steps, guidance_scale, generate_size, blur, strength],
outputs=[generated_image, generated_cost],
).success(
fn=restore_result,
inputs=[croper, category, generated_image],
outputs=[restored_image],
)
return demo |