Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import time | |
import torch | |
import numpy as np | |
from PIL import Image | |
from segment_utils import( | |
segment_image, | |
restore_result, | |
) | |
from diffusers import ( | |
DiffusionPipeline, | |
T2IAdapter, | |
MultiAdapter, | |
AutoencoderKL, | |
EulerAncestralDiscreteScheduler, | |
) | |
from controlnet_aux import ( | |
CannyDetector, | |
LineartDetector, | |
) | |
BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0" | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
DEFAULT_EDIT_PROMPT = "RAW photo, Fujifilm XT3, sharp hair, high resolution hair, hair tones, natural hair, magazine hair, white color hair" | |
DEFAULT_CATEGORY = "hair" | |
canny_detector = CannyDetector() | |
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators") | |
lineart_detector = lineart_detector.to(DEVICE) | |
adapters = MultiAdapter( | |
[ | |
T2IAdapter.from_pretrained( | |
"TencentARC/t2i-adapter-lineart-sdxl-1.0", | |
torch_dtype=torch.float16, | |
varient="fp16", | |
), | |
T2IAdapter.from_pretrained( | |
"TencentARC/t2i-adapter-canny-sdxl-1.0", | |
torch_dtype=torch.float16, | |
varient="fp16", | |
), | |
] | |
) | |
adapters = adapters.to(torch.float16) | |
basepipeline = DiffusionPipeline.from_pretrained( | |
BASE_MODEL, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True, | |
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16), | |
scheduler=EulerAncestralDiscreteScheduler.from_pretrained(BASE_MODEL, subfolder="scheduler"), | |
adapter=adapters, | |
custom_pipeline="./pipelines/pipeline_sdxl_adapter_img2img.py", | |
) | |
basepipeline = basepipeline.to(DEVICE) | |
basepipeline.enable_model_cpu_offload() | |
def image_to_image( | |
input_image: Image, | |
edit_prompt: str, | |
seed: int, | |
num_steps: int, | |
guidance_scale: float, | |
strength: float, | |
generate_size: int, | |
cond_scale1: float = 1.2, | |
cond_scale2: float = 1.2, | |
lineart_detect:float = 0.375, | |
canny_detect:float = 0.375, | |
): | |
run_task_time = 0 | |
time_cost_str = '' | |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
lineart_image = lineart_detector(input_image, int(generate_size * lineart_detect), generate_size) | |
canny_image = canny_detector(input_image, int(generate_size * canny_detect), generate_size) | |
cond_image = [lineart_image, canny_image] | |
cond_scale = [cond_scale1, cond_scale2] | |
generator = torch.Generator(device=DEVICE).manual_seed(seed) | |
generated_image = basepipeline( | |
generator=generator, | |
prompt=edit_prompt, | |
image=input_image, | |
height=generate_size, | |
width=generate_size, | |
guidance_scale=guidance_scale, | |
strength=strength, | |
num_inference_steps=num_steps, | |
adapter_image=cond_image, | |
adapter_conditioning_scale=cond_scale, | |
).images[0] | |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
return generated_image, time_cost_str | |
def make_inpaint_condition(image, image_mask): | |
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 | |
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 | |
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" | |
image[image_mask > 0.5] = -1.0 # set as masked pixel | |
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return image | |
def get_time_cost(run_task_time, time_cost_str): | |
now_time = int(time.time()*1000) | |
if run_task_time == 0: | |
time_cost_str = 'start' | |
else: | |
if time_cost_str != '': | |
time_cost_str += f'-->' | |
time_cost_str += f'{now_time - run_task_time}' | |
run_task_time = now_time | |
return run_task_time, time_cost_str | |
def create_demo() -> gr.Blocks: | |
with gr.Blocks() as demo: | |
croper = gr.State() | |
with gr.Row(): | |
with gr.Column(): | |
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) | |
generate_size = gr.Number(label="Generate Size", value=512) | |
with gr.Column(): | |
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps") | |
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale") | |
with gr.Column(): | |
strength = gr.Slider(minimum=0, maximum=3, value=0.2, step=0.1, label="Strength") | |
with gr.Accordion("Advanced Options", open=False): | |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True) | |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation") | |
seed = gr.Number(label="Seed", value=8) | |
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) | |
cond_scale1 = gr.Slider(minimum=0, maximum=3, value=0.8, step=0.1, label="Cond_scale1") | |
cond_scale2 = gr.Slider(minimum=0, maximum=3, value=0.3, step=0.1, label="Cond_scale2") | |
lineart_detect = gr.Slider(minimum=0, maximum=1, value=0.375, step=0.01, label="Lineart Detect") | |
canny_detect = gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label="Canny Detect") | |
g_btn = gr.Button("Edit Image") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image", type="pil") | |
with gr.Column(): | |
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False) | |
with gr.Column(): | |
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False) | |
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False) | |
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) | |
g_btn.click( | |
fn=segment_image, | |
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], | |
outputs=[origin_area_image, croper], | |
).success( | |
fn=image_to_image, | |
inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, strength, generate_size, cond_scale1, cond_scale2, lineart_detect, canny_detect], | |
outputs=[generated_image, generated_cost], | |
).success( | |
fn=restore_result, | |
inputs=[croper, category, generated_image], | |
outputs=[restored_image], | |
) | |
return demo |