Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Callable, Dict, List, Optional, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from diffusers import StableDiffusionImg2ImgPipeline | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
class MaskedStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline): | |
debug_save = False | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
image: Union[ | |
torch.Tensor, | |
PIL.Image.Image, | |
np.ndarray, | |
List[torch.Tensor], | |
List[PIL.Image.Image], | |
List[np.ndarray], | |
] = None, | |
strength: float = 0.8, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: Optional[float] = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
mask: Union[ | |
torch.Tensor, | |
PIL.Image.Image, | |
np.ndarray, | |
List[torch.Tensor], | |
List[PIL.Image.Image], | |
List[np.ndarray], | |
] = None, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
`Image` or tensor representing an image batch to be used as the starting point. Can also accept image | |
latents as `image`, but if passing latents directly it is not encoded again. | |
strength (`float`, *optional*, defaults to 0.8): | |
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | |
starting point and more noise is added the higher the `strength`. The number of denoising steps depends | |
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | |
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | |
essentially ignores `image`. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. This parameter is modulated by `strength`. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
mask (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`, *optional*): | |
A mask with non-zero elements for the area to be inpainted. If not specified, no mask is applied. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
# code adapted from parent class StableDiffusionImg2ImgPipeline | |
# 0. Check inputs. Raise error if not correct | |
self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) | |
# 1. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 2. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 3. Preprocess image | |
image = self.image_processor.preprocess(image) | |
# 4. set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
# 5. Prepare latent variables | |
# it is sampled from the latent distribution of the VAE | |
latents = self.prepare_latents( | |
image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator | |
) | |
# mean of the latent distribution | |
init_latents = [ | |
self.vae.encode(image.to(device=device, dtype=prompt_embeds.dtype)[i : i + 1]).latent_dist.mean | |
for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
# 6. create latent mask | |
latent_mask = self._make_latent_mask(latents, mask) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if latent_mask is not None: | |
latents = torch.lerp(init_latents * self.vae.config.scaling_factor, latents, latent_mask) | |
noise_pred = torch.lerp(torch.zeros_like(noise_pred), noise_pred, latent_mask) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if not output_type == "latent": | |
scaled = latents / self.vae.config.scaling_factor | |
if latent_mask is not None: | |
# scaled = latents / self.vae.config.scaling_factor * latent_mask + init_latents * (1 - latent_mask) | |
scaled = torch.lerp(init_latents, scaled, latent_mask) | |
image = self.vae.decode(scaled, return_dict=False)[0] | |
if self.debug_save: | |
image_gen = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
image_gen = self.image_processor.postprocess(image_gen, output_type=output_type, do_denormalize=[True]) | |
image_gen[0].save("from_latent.png") | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
def _make_latent_mask(self, latents, mask): | |
if mask is not None: | |
latent_mask = [] | |
if not isinstance(mask, list): | |
tmp_mask = [mask] | |
else: | |
tmp_mask = mask | |
_, l_channels, l_height, l_width = latents.shape | |
for m in tmp_mask: | |
if not isinstance(m, PIL.Image.Image): | |
if len(m.shape) == 2: | |
m = m[..., np.newaxis] | |
if m.max() > 1: | |
m = m / 255.0 | |
m = self.image_processor.numpy_to_pil(m)[0] | |
if m.mode != "L": | |
m = m.convert("L") | |
resized = self.image_processor.resize(m, l_height, l_width) | |
if self.debug_save: | |
resized.save("latent_mask.png") | |
latent_mask.append(np.repeat(np.array(resized)[np.newaxis, :, :], l_channels, axis=0)) | |
latent_mask = torch.as_tensor(np.stack(latent_mask)).to(latents) | |
latent_mask = latent_mask / latent_mask.max() | |
return latent_mask | |