zhiweili commited on
Commit
6345fdb
1 Parent(s): 12c7808

test control net

Browse files
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import gradio as gr
2
 
3
- from app_haircolor_inpaint_adapter_15 import create_demo as create_demo_haircolor
4
 
5
  with gr.Blocks(css="style.css") as demo:
6
  with gr.Tabs():
 
1
  import gradio as gr
2
 
3
+ from app_haircolor_inpaint_15 import create_demo as create_demo_haircolor
4
 
5
  with gr.Blocks(css="style.css") as demo:
6
  with gr.Tabs():
app_haircolor_inpaint_15.py CHANGED
@@ -24,8 +24,8 @@ from controlnet_aux import (
24
  HEDdetector,
25
  )
26
 
27
- # BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
28
- BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
29
 
30
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
31
 
@@ -53,10 +53,6 @@ controlnet = [
53
  "lllyasviel/control_v11p_sd15_softedge",
54
  torch_dtype=torch.float16,
55
  ),
56
- ControlNetModel.from_pretrained(
57
- "lllyasviel/control_v11p_sd15_canny",
58
- torch_dtype=torch.float16,
59
- ),
60
  ]
61
 
62
  basepipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
@@ -83,16 +79,15 @@ def image_to_image(
83
  generate_size: int,
84
  cond_scale1: float = 1.2,
85
  cond_scale2: float = 1.2,
86
- cond_scale3: float = 1.2,
87
  ):
88
  run_task_time = 0
89
  time_cost_str = ''
90
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
91
- canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
92
  lineart_image = lineart_detector(input_image, int(generate_size*1), generate_size)
93
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
94
  pidiNet_image = pidiNet_detector(input_image, int(generate_size*1), generate_size)
95
- control_image = [lineart_image, pidiNet_image, canny_image]
96
 
97
  generator = torch.Generator(device=DEVICE).manual_seed(seed)
98
  generated_image = basepipeline(
@@ -106,7 +101,7 @@ def image_to_image(
106
  width=generate_size,
107
  guidance_scale=guidance_scale,
108
  num_inference_steps=num_steps,
109
- controlnet_conditioning_scale=[cond_scale1, cond_scale2, cond_scale3],
110
  ).images[0]
111
 
112
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
@@ -142,7 +137,7 @@ def create_demo() -> gr.Blocks:
142
  edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
143
  generate_size = gr.Number(label="Generate Size", value=512)
144
  with gr.Column():
145
- num_steps = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Num Steps")
146
  guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
147
  with gr.Column():
148
  with gr.Accordion("Advanced Options", open=False):
 
24
  HEDdetector,
25
  )
26
 
27
+ BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
28
+ # BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
29
 
30
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
31
 
 
53
  "lllyasviel/control_v11p_sd15_softedge",
54
  torch_dtype=torch.float16,
55
  ),
 
 
 
 
56
  ]
57
 
58
  basepipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
 
79
  generate_size: int,
80
  cond_scale1: float = 1.2,
81
  cond_scale2: float = 1.2,
 
82
  ):
83
  run_task_time = 0
84
  time_cost_str = ''
85
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
86
+ # canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
87
  lineart_image = lineart_detector(input_image, int(generate_size*1), generate_size)
88
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
89
  pidiNet_image = pidiNet_detector(input_image, int(generate_size*1), generate_size)
90
+ control_image = [lineart_image, pidiNet_image]
91
 
92
  generator = torch.Generator(device=DEVICE).manual_seed(seed)
93
  generated_image = basepipeline(
 
101
  width=generate_size,
102
  guidance_scale=guidance_scale,
103
  num_inference_steps=num_steps,
104
+ controlnet_conditioning_scale=[cond_scale1, cond_scale2],
105
  ).images[0]
106
 
107
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
 
137
  edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
138
  generate_size = gr.Number(label="Generate Size", value=512)
139
  with gr.Column():
140
+ num_steps = gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Num Steps")
141
  guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
142
  with gr.Column():
143
  with gr.Accordion("Advanced Options", open=False):
app_haircolor_inpaint_adapter_15.py CHANGED
@@ -72,7 +72,7 @@ basepipeline = DiffusionPipeline.from_pretrained(
72
  custom_pipeline="./pipelines/pipeline_sd_adapter_inpaint.py",
73
  )
74
 
75
- # basepipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(basepipeline.scheduler.config)
76
 
77
  basepipeline = basepipeline.to(DEVICE)
78
 
 
72
  custom_pipeline="./pipelines/pipeline_sd_adapter_inpaint.py",
73
  )
74
 
75
+ basepipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(basepipeline.scheduler.config)
76
 
77
  basepipeline = basepipeline.to(DEVICE)
78