Spaces:
Running
on
Zero
Running
on
Zero
zhiweili
commited on
Commit
•
963fadc
1
Parent(s):
37a1718
chnage to adapter
Browse files- app.py +1 -1
- app_haircolor_inpaint_adapter_15.py +181 -0
- pipelines/pipeline_sd_adapter_inpaint.py +1475 -0
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from
|
4 |
|
5 |
with gr.Blocks(css="style.css") as demo:
|
6 |
with gr.Tabs():
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from app_haircolor_inpaint_adapter_15 import create_demo as create_demo_haircolor
|
4 |
|
5 |
with gr.Blocks(css="style.css") as demo:
|
6 |
with gr.Tabs():
|
app_haircolor_inpaint_adapter_15.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
from segment_utils import(
|
9 |
+
segment_image_withmask,
|
10 |
+
restore_result,
|
11 |
+
)
|
12 |
+
from diffusers import (
|
13 |
+
DiffusionPipeline,
|
14 |
+
DDIMScheduler,
|
15 |
+
AutoencoderKL,
|
16 |
+
EulerAncestralDiscreteScheduler,
|
17 |
+
T2IAdapter,
|
18 |
+
MultiAdapter,
|
19 |
+
)
|
20 |
+
|
21 |
+
from controlnet_aux import (
|
22 |
+
CannyDetector,
|
23 |
+
LineartDetector,
|
24 |
+
PidiNetDetector,
|
25 |
+
HEDdetector,
|
26 |
+
)
|
27 |
+
|
28 |
+
BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
29 |
+
|
30 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
|
32 |
+
DEFAULT_EDIT_PROMPT = "a woman, blue hair, high detailed"
|
33 |
+
DEFAULT_NEGATIVE_PROMPT = "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting, poorly drawn face, bad face, fused face, ugly face, worst face, asymmetrical, unrealistic skin texture, bad proportions, out of frame, poorly drawn hands, cloned face, double face"
|
34 |
+
|
35 |
+
DEFAULT_CATEGORY = "hair"
|
36 |
+
|
37 |
+
canny_detector = CannyDetector()
|
38 |
+
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
39 |
+
lineart_detector = lineart_detector.to(DEVICE)
|
40 |
+
|
41 |
+
pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
|
42 |
+
pidiNet_detector = pidiNet_detector.to(DEVICE)
|
43 |
+
|
44 |
+
adapters = MultiAdapter(
|
45 |
+
[
|
46 |
+
T2IAdapter.from_pretrained(
|
47 |
+
"TencentARC/t2iadapter_canny_sd15v2",
|
48 |
+
torch_dtype=torch.float16,
|
49 |
+
varient="fp16",
|
50 |
+
),
|
51 |
+
T2IAdapter.from_pretrained(
|
52 |
+
"TencentARC/t2iadapter_sketch_sd15v2",
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
varient="fp16",
|
55 |
+
),
|
56 |
+
]
|
57 |
+
)
|
58 |
+
adapters = adapters.to(torch.float16)
|
59 |
+
|
60 |
+
basepipeline = DiffusionPipeline.from_pretrained(
|
61 |
+
BASE_MODEL,
|
62 |
+
torch_dtype=torch.float16,
|
63 |
+
use_safetensors=True,
|
64 |
+
adapter=adapters,
|
65 |
+
custom_pipeline="./pipelines/pipeline_sd_adapter_inpaint.py",
|
66 |
+
)
|
67 |
+
|
68 |
+
basepipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(basepipeline.scheduler.config)
|
69 |
+
|
70 |
+
basepipeline = basepipeline.to(DEVICE)
|
71 |
+
|
72 |
+
basepipeline.enable_model_cpu_offload()
|
73 |
+
|
74 |
+
@spaces.GPU(duration=30)
|
75 |
+
def image_to_image(
|
76 |
+
input_image: Image,
|
77 |
+
mask_image: Image,
|
78 |
+
edit_prompt: str,
|
79 |
+
seed: int,
|
80 |
+
num_steps: int,
|
81 |
+
guidance_scale: float,
|
82 |
+
generate_size: int,
|
83 |
+
cond_scale1: float = 1.2,
|
84 |
+
cond_scale2: float = 1.2,
|
85 |
+
):
|
86 |
+
run_task_time = 0
|
87 |
+
time_cost_str = ''
|
88 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
89 |
+
canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
|
90 |
+
# lineart_image = lineart_detector(input_image, int(generate_size*1), generate_size)
|
91 |
+
# run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
92 |
+
pidiNet_image = pidiNet_detector(input_image, int(generate_size*1), generate_size)
|
93 |
+
cond_image = [pidiNet_image, canny_image]
|
94 |
+
cond_scale = [cond_scale1, cond_scale2]
|
95 |
+
|
96 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
97 |
+
generated_image = basepipeline(
|
98 |
+
generator=generator,
|
99 |
+
prompt=edit_prompt,
|
100 |
+
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
101 |
+
image=input_image,
|
102 |
+
mask_image=mask_image,
|
103 |
+
height=generate_size,
|
104 |
+
width=generate_size,
|
105 |
+
guidance_scale=guidance_scale,
|
106 |
+
num_inference_steps=num_steps,
|
107 |
+
adapter_image=cond_image,
|
108 |
+
adapter_conditioning_scale=cond_scale,
|
109 |
+
).images[0]
|
110 |
+
|
111 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
112 |
+
|
113 |
+
return generated_image, time_cost_str
|
114 |
+
|
115 |
+
def make_inpaint_condition(image, image_mask):
|
116 |
+
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
|
117 |
+
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
|
118 |
+
|
119 |
+
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
|
120 |
+
image[image_mask > 0.5] = -1.0 # set as masked pixel
|
121 |
+
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
|
122 |
+
image = torch.from_numpy(image)
|
123 |
+
return image
|
124 |
+
|
125 |
+
def get_time_cost(run_task_time, time_cost_str):
|
126 |
+
now_time = int(time.time()*1000)
|
127 |
+
if run_task_time == 0:
|
128 |
+
time_cost_str = 'start'
|
129 |
+
else:
|
130 |
+
if time_cost_str != '':
|
131 |
+
time_cost_str += f'-->'
|
132 |
+
time_cost_str += f'{now_time - run_task_time}'
|
133 |
+
run_task_time = now_time
|
134 |
+
return run_task_time, time_cost_str
|
135 |
+
|
136 |
+
def create_demo() -> gr.Blocks:
|
137 |
+
with gr.Blocks() as demo:
|
138 |
+
croper = gr.State()
|
139 |
+
with gr.Row():
|
140 |
+
with gr.Column():
|
141 |
+
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
|
142 |
+
generate_size = gr.Number(label="Generate Size", value=512)
|
143 |
+
with gr.Column():
|
144 |
+
num_steps = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Num Steps")
|
145 |
+
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
|
146 |
+
with gr.Column():
|
147 |
+
with gr.Accordion("Advanced Options", open=False):
|
148 |
+
cond_scale1 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Lineart Scale")
|
149 |
+
cond_scale2 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="PidiNet Scale")
|
150 |
+
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
151 |
+
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
152 |
+
seed = gr.Number(label="Seed", value=8)
|
153 |
+
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
|
154 |
+
g_btn = gr.Button("Edit Image")
|
155 |
+
|
156 |
+
with gr.Row():
|
157 |
+
with gr.Column():
|
158 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
159 |
+
with gr.Column():
|
160 |
+
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
|
161 |
+
with gr.Column():
|
162 |
+
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
|
163 |
+
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
|
164 |
+
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
|
165 |
+
mask_image = gr.Image(label="Mask Image", type="pil", interactive=False)
|
166 |
+
|
167 |
+
g_btn.click(
|
168 |
+
fn=segment_image_withmask,
|
169 |
+
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
|
170 |
+
outputs=[origin_area_image, mask_image, croper],
|
171 |
+
).success(
|
172 |
+
fn=image_to_image,
|
173 |
+
inputs=[origin_area_image, mask_image, edit_prompt,seed, num_steps, guidance_scale, generate_size, cond_scale1, cond_scale2],
|
174 |
+
outputs=[generated_image, generated_cost],
|
175 |
+
).success(
|
176 |
+
fn=restore_result,
|
177 |
+
inputs=[croper, category, generated_image],
|
178 |
+
outputs=[restored_image],
|
179 |
+
)
|
180 |
+
|
181 |
+
return demo
|
pipelines/pipeline_sd_adapter_inpaint.py
ADDED
@@ -0,0 +1,1475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import PIL.Image
|
20 |
+
import torch
|
21 |
+
from packaging import version
|
22 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
23 |
+
|
24 |
+
from diffusers.callbacks import (
|
25 |
+
MultiPipelineCallbacks,
|
26 |
+
PipelineCallback,
|
27 |
+
)
|
28 |
+
|
29 |
+
from diffusers.configuration_utils import FrozenDict
|
30 |
+
|
31 |
+
from diffusers.image_processor import (
|
32 |
+
PipelineImageInput,
|
33 |
+
VaeImageProcessor,
|
34 |
+
)
|
35 |
+
|
36 |
+
from diffusers.loaders import (
|
37 |
+
FromSingleFileMixin,
|
38 |
+
IPAdapterMixin,
|
39 |
+
StableDiffusionLoraLoaderMixin,
|
40 |
+
TextualInversionLoaderMixin,
|
41 |
+
)
|
42 |
+
|
43 |
+
from diffusers.models import (
|
44 |
+
AsymmetricAutoencoderKL,
|
45 |
+
AutoencoderKL,
|
46 |
+
ImageProjection,
|
47 |
+
MultiAdapter,
|
48 |
+
T2IAdapter,
|
49 |
+
UNet2DConditionModel,
|
50 |
+
)
|
51 |
+
|
52 |
+
from diffusers.models.lora import (
|
53 |
+
adjust_lora_scale_text_encoder,
|
54 |
+
)
|
55 |
+
|
56 |
+
from diffusers.schedulers import (
|
57 |
+
KarrasDiffusionSchedulers,
|
58 |
+
)
|
59 |
+
|
60 |
+
from diffusers.utils import (
|
61 |
+
PIL_INTERPOLATION,
|
62 |
+
USE_PEFT_BACKEND,
|
63 |
+
deprecate,
|
64 |
+
logging,
|
65 |
+
scale_lora_layers,
|
66 |
+
unscale_lora_layers,
|
67 |
+
)
|
68 |
+
from diffusers.utils.torch_utils import (
|
69 |
+
randn_tensor,
|
70 |
+
)
|
71 |
+
|
72 |
+
from diffusers.pipelines.pipeline_utils import (
|
73 |
+
DiffusionPipeline,
|
74 |
+
StableDiffusionMixin,
|
75 |
+
)
|
76 |
+
|
77 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import (
|
78 |
+
StableDiffusionPipelineOutput,
|
79 |
+
)
|
80 |
+
|
81 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
82 |
+
StableDiffusionSafetyChecker,
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
87 |
+
|
88 |
+
def _preprocess_adapter_image(image, height, width):
|
89 |
+
if isinstance(image, torch.Tensor):
|
90 |
+
return image
|
91 |
+
elif isinstance(image, PIL.Image.Image):
|
92 |
+
image = [image]
|
93 |
+
|
94 |
+
if isinstance(image[0], PIL.Image.Image):
|
95 |
+
image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])) for i in image]
|
96 |
+
image = [
|
97 |
+
i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image
|
98 |
+
] # expand [h, w] or [h, w, c] to [b, h, w, c]
|
99 |
+
image = np.concatenate(image, axis=0)
|
100 |
+
image = np.array(image).astype(np.float32) / 255.0
|
101 |
+
image = image.transpose(0, 3, 1, 2)
|
102 |
+
image = torch.from_numpy(image)
|
103 |
+
elif isinstance(image[0], torch.Tensor):
|
104 |
+
if image[0].ndim == 3:
|
105 |
+
image = torch.stack(image, dim=0)
|
106 |
+
elif image[0].ndim == 4:
|
107 |
+
image = torch.cat(image, dim=0)
|
108 |
+
else:
|
109 |
+
raise ValueError(
|
110 |
+
f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}"
|
111 |
+
)
|
112 |
+
return image
|
113 |
+
|
114 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
115 |
+
def retrieve_latents(
|
116 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
117 |
+
):
|
118 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
119 |
+
return encoder_output.latent_dist.sample(generator)
|
120 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
121 |
+
return encoder_output.latent_dist.mode()
|
122 |
+
elif hasattr(encoder_output, "latents"):
|
123 |
+
return encoder_output.latents
|
124 |
+
else:
|
125 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
126 |
+
|
127 |
+
|
128 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
129 |
+
def retrieve_timesteps(
|
130 |
+
scheduler,
|
131 |
+
num_inference_steps: Optional[int] = None,
|
132 |
+
device: Optional[Union[str, torch.device]] = None,
|
133 |
+
timesteps: Optional[List[int]] = None,
|
134 |
+
sigmas: Optional[List[float]] = None,
|
135 |
+
**kwargs,
|
136 |
+
):
|
137 |
+
"""
|
138 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
139 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
scheduler (`SchedulerMixin`):
|
143 |
+
The scheduler to get timesteps from.
|
144 |
+
num_inference_steps (`int`):
|
145 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
146 |
+
must be `None`.
|
147 |
+
device (`str` or `torch.device`, *optional*):
|
148 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
149 |
+
timesteps (`List[int]`, *optional*):
|
150 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
151 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
152 |
+
sigmas (`List[float]`, *optional*):
|
153 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
154 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
155 |
+
|
156 |
+
Returns:
|
157 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
158 |
+
second element is the number of inference steps.
|
159 |
+
"""
|
160 |
+
if timesteps is not None and sigmas is not None:
|
161 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
162 |
+
if timesteps is not None:
|
163 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
164 |
+
if not accepts_timesteps:
|
165 |
+
raise ValueError(
|
166 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
167 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
168 |
+
)
|
169 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
170 |
+
timesteps = scheduler.timesteps
|
171 |
+
num_inference_steps = len(timesteps)
|
172 |
+
elif sigmas is not None:
|
173 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
174 |
+
if not accept_sigmas:
|
175 |
+
raise ValueError(
|
176 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
177 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
178 |
+
)
|
179 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
180 |
+
timesteps = scheduler.timesteps
|
181 |
+
num_inference_steps = len(timesteps)
|
182 |
+
else:
|
183 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
184 |
+
timesteps = scheduler.timesteps
|
185 |
+
return timesteps, num_inference_steps
|
186 |
+
|
187 |
+
|
188 |
+
class StableDiffusionInpaintPipeline(
|
189 |
+
DiffusionPipeline,
|
190 |
+
StableDiffusionMixin,
|
191 |
+
TextualInversionLoaderMixin,
|
192 |
+
IPAdapterMixin,
|
193 |
+
StableDiffusionLoraLoaderMixin,
|
194 |
+
FromSingleFileMixin,
|
195 |
+
):
|
196 |
+
r"""
|
197 |
+
Pipeline for text-guided image inpainting using Stable Diffusion.
|
198 |
+
|
199 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
200 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
201 |
+
|
202 |
+
The pipeline also inherits the following loading methods:
|
203 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
204 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
205 |
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
206 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
207 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
208 |
+
|
209 |
+
Args:
|
210 |
+
vae ([`AutoencoderKL`, `AsymmetricAutoencoderKL`]):
|
211 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
212 |
+
text_encoder ([`CLIPTextModel`]):
|
213 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
214 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
215 |
+
A `CLIPTokenizer` to tokenize text.
|
216 |
+
unet ([`UNet2DConditionModel`]):
|
217 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
218 |
+
scheduler ([`SchedulerMixin`]):
|
219 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
220 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
221 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
222 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
223 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
224 |
+
about a model's potential harms.
|
225 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
226 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
227 |
+
"""
|
228 |
+
|
229 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
230 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
231 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
232 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "mask", "masked_image_latents"]
|
233 |
+
|
234 |
+
def __init__(
|
235 |
+
self,
|
236 |
+
vae: Union[AutoencoderKL, AsymmetricAutoencoderKL],
|
237 |
+
text_encoder: CLIPTextModel,
|
238 |
+
tokenizer: CLIPTokenizer,
|
239 |
+
unet: UNet2DConditionModel,
|
240 |
+
adapter: Union[T2IAdapter, MultiAdapter, List[T2IAdapter]],
|
241 |
+
scheduler: KarrasDiffusionSchedulers,
|
242 |
+
safety_checker: StableDiffusionSafetyChecker,
|
243 |
+
feature_extractor: CLIPImageProcessor,
|
244 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
245 |
+
requires_safety_checker: bool = True,
|
246 |
+
):
|
247 |
+
super().__init__()
|
248 |
+
|
249 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
250 |
+
deprecation_message = (
|
251 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
252 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
253 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
254 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
255 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
256 |
+
" file"
|
257 |
+
)
|
258 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
259 |
+
new_config = dict(scheduler.config)
|
260 |
+
new_config["steps_offset"] = 1
|
261 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
262 |
+
|
263 |
+
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
|
264 |
+
deprecation_message = (
|
265 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration"
|
266 |
+
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
|
267 |
+
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
|
268 |
+
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
|
269 |
+
" Hub, it would be very nice if you could open a Pull request for the"
|
270 |
+
" `scheduler/scheduler_config.json` file"
|
271 |
+
)
|
272 |
+
deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False)
|
273 |
+
new_config = dict(scheduler.config)
|
274 |
+
new_config["skip_prk_steps"] = True
|
275 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
276 |
+
|
277 |
+
if safety_checker is None and requires_safety_checker:
|
278 |
+
logger.warning(
|
279 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
280 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
281 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
282 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
283 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
284 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
285 |
+
)
|
286 |
+
|
287 |
+
if safety_checker is not None and feature_extractor is None:
|
288 |
+
raise ValueError(
|
289 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
290 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
291 |
+
)
|
292 |
+
|
293 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
294 |
+
version.parse(unet.config._diffusers_version).base_version
|
295 |
+
) < version.parse("0.9.0.dev0")
|
296 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
297 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
298 |
+
deprecation_message = (
|
299 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
300 |
+
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
301 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
302 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
303 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
304 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
305 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
306 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
307 |
+
" the `unet/config.json` file"
|
308 |
+
)
|
309 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
310 |
+
new_config = dict(unet.config)
|
311 |
+
new_config["sample_size"] = 64
|
312 |
+
unet._internal_dict = FrozenDict(new_config)
|
313 |
+
|
314 |
+
# Check shapes, assume num_channels_latents == 4, num_channels_mask == 1, num_channels_masked == 4
|
315 |
+
if unet.config.in_channels != 9:
|
316 |
+
logger.info(f"You have loaded a UNet with {unet.config.in_channels} input channels which.")
|
317 |
+
|
318 |
+
if isinstance(adapter, (list, tuple)):
|
319 |
+
adapter = MultiAdapter(adapter)
|
320 |
+
|
321 |
+
self.register_modules(
|
322 |
+
vae=vae,
|
323 |
+
text_encoder=text_encoder,
|
324 |
+
tokenizer=tokenizer,
|
325 |
+
unet=unet,
|
326 |
+
adapter=adapter,
|
327 |
+
scheduler=scheduler,
|
328 |
+
safety_checker=safety_checker,
|
329 |
+
feature_extractor=feature_extractor,
|
330 |
+
image_encoder=image_encoder,
|
331 |
+
)
|
332 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
333 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
334 |
+
self.mask_processor = VaeImageProcessor(
|
335 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
336 |
+
)
|
337 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
338 |
+
|
339 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
340 |
+
def _encode_prompt(
|
341 |
+
self,
|
342 |
+
prompt,
|
343 |
+
device,
|
344 |
+
num_images_per_prompt,
|
345 |
+
do_classifier_free_guidance,
|
346 |
+
negative_prompt=None,
|
347 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
348 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
349 |
+
lora_scale: Optional[float] = None,
|
350 |
+
**kwargs,
|
351 |
+
):
|
352 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
353 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
354 |
+
|
355 |
+
prompt_embeds_tuple = self.encode_prompt(
|
356 |
+
prompt=prompt,
|
357 |
+
device=device,
|
358 |
+
num_images_per_prompt=num_images_per_prompt,
|
359 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
360 |
+
negative_prompt=negative_prompt,
|
361 |
+
prompt_embeds=prompt_embeds,
|
362 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
363 |
+
lora_scale=lora_scale,
|
364 |
+
**kwargs,
|
365 |
+
)
|
366 |
+
|
367 |
+
# concatenate for backwards comp
|
368 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
369 |
+
|
370 |
+
return prompt_embeds
|
371 |
+
|
372 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
373 |
+
def encode_prompt(
|
374 |
+
self,
|
375 |
+
prompt,
|
376 |
+
device,
|
377 |
+
num_images_per_prompt,
|
378 |
+
do_classifier_free_guidance,
|
379 |
+
negative_prompt=None,
|
380 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
381 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
382 |
+
lora_scale: Optional[float] = None,
|
383 |
+
clip_skip: Optional[int] = None,
|
384 |
+
):
|
385 |
+
r"""
|
386 |
+
Encodes the prompt into text encoder hidden states.
|
387 |
+
|
388 |
+
Args:
|
389 |
+
prompt (`str` or `List[str]`, *optional*):
|
390 |
+
prompt to be encoded
|
391 |
+
device: (`torch.device`):
|
392 |
+
torch device
|
393 |
+
num_images_per_prompt (`int`):
|
394 |
+
number of images that should be generated per prompt
|
395 |
+
do_classifier_free_guidance (`bool`):
|
396 |
+
whether to use classifier free guidance or not
|
397 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
398 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
399 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
400 |
+
less than `1`).
|
401 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
402 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
403 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
404 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
405 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
406 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
407 |
+
argument.
|
408 |
+
lora_scale (`float`, *optional*):
|
409 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
410 |
+
clip_skip (`int`, *optional*):
|
411 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
412 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
413 |
+
"""
|
414 |
+
# set lora scale so that monkey patched LoRA
|
415 |
+
# function of text encoder can correctly access it
|
416 |
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
417 |
+
self._lora_scale = lora_scale
|
418 |
+
|
419 |
+
# dynamically adjust the LoRA scale
|
420 |
+
if not USE_PEFT_BACKEND:
|
421 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
422 |
+
else:
|
423 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
424 |
+
|
425 |
+
if prompt is not None and isinstance(prompt, str):
|
426 |
+
batch_size = 1
|
427 |
+
elif prompt is not None and isinstance(prompt, list):
|
428 |
+
batch_size = len(prompt)
|
429 |
+
else:
|
430 |
+
batch_size = prompt_embeds.shape[0]
|
431 |
+
|
432 |
+
if prompt_embeds is None:
|
433 |
+
# textual inversion: process multi-vector tokens if necessary
|
434 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
435 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
436 |
+
|
437 |
+
text_inputs = self.tokenizer(
|
438 |
+
prompt,
|
439 |
+
padding="max_length",
|
440 |
+
max_length=self.tokenizer.model_max_length,
|
441 |
+
truncation=True,
|
442 |
+
return_tensors="pt",
|
443 |
+
)
|
444 |
+
text_input_ids = text_inputs.input_ids
|
445 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
446 |
+
|
447 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
448 |
+
text_input_ids, untruncated_ids
|
449 |
+
):
|
450 |
+
removed_text = self.tokenizer.batch_decode(
|
451 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
452 |
+
)
|
453 |
+
logger.warning(
|
454 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
455 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
456 |
+
)
|
457 |
+
|
458 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
459 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
460 |
+
else:
|
461 |
+
attention_mask = None
|
462 |
+
|
463 |
+
if clip_skip is None:
|
464 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
465 |
+
prompt_embeds = prompt_embeds[0]
|
466 |
+
else:
|
467 |
+
prompt_embeds = self.text_encoder(
|
468 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
469 |
+
)
|
470 |
+
# Access the `hidden_states` first, that contains a tuple of
|
471 |
+
# all the hidden states from the encoder layers. Then index into
|
472 |
+
# the tuple to access the hidden states from the desired layer.
|
473 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
474 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
475 |
+
# representations. The `last_hidden_states` that we typically use for
|
476 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
477 |
+
# layer.
|
478 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
479 |
+
|
480 |
+
if self.text_encoder is not None:
|
481 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
482 |
+
elif self.unet is not None:
|
483 |
+
prompt_embeds_dtype = self.unet.dtype
|
484 |
+
else:
|
485 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
486 |
+
|
487 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
488 |
+
|
489 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
490 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
491 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
492 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
493 |
+
|
494 |
+
# get unconditional embeddings for classifier free guidance
|
495 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
496 |
+
uncond_tokens: List[str]
|
497 |
+
if negative_prompt is None:
|
498 |
+
uncond_tokens = [""] * batch_size
|
499 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
500 |
+
raise TypeError(
|
501 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
502 |
+
f" {type(prompt)}."
|
503 |
+
)
|
504 |
+
elif isinstance(negative_prompt, str):
|
505 |
+
uncond_tokens = [negative_prompt]
|
506 |
+
elif batch_size != len(negative_prompt):
|
507 |
+
raise ValueError(
|
508 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
509 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
510 |
+
" the batch size of `prompt`."
|
511 |
+
)
|
512 |
+
else:
|
513 |
+
uncond_tokens = negative_prompt
|
514 |
+
|
515 |
+
# textual inversion: process multi-vector tokens if necessary
|
516 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
517 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
518 |
+
|
519 |
+
max_length = prompt_embeds.shape[1]
|
520 |
+
uncond_input = self.tokenizer(
|
521 |
+
uncond_tokens,
|
522 |
+
padding="max_length",
|
523 |
+
max_length=max_length,
|
524 |
+
truncation=True,
|
525 |
+
return_tensors="pt",
|
526 |
+
)
|
527 |
+
|
528 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
529 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
530 |
+
else:
|
531 |
+
attention_mask = None
|
532 |
+
|
533 |
+
negative_prompt_embeds = self.text_encoder(
|
534 |
+
uncond_input.input_ids.to(device),
|
535 |
+
attention_mask=attention_mask,
|
536 |
+
)
|
537 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
538 |
+
|
539 |
+
if do_classifier_free_guidance:
|
540 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
541 |
+
seq_len = negative_prompt_embeds.shape[1]
|
542 |
+
|
543 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
544 |
+
|
545 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
546 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
547 |
+
|
548 |
+
if self.text_encoder is not None:
|
549 |
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
550 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
551 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
552 |
+
|
553 |
+
return prompt_embeds, negative_prompt_embeds
|
554 |
+
|
555 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
556 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
557 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
558 |
+
|
559 |
+
if not isinstance(image, torch.Tensor):
|
560 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
561 |
+
|
562 |
+
image = image.to(device=device, dtype=dtype)
|
563 |
+
if output_hidden_states:
|
564 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
565 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
566 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
567 |
+
torch.zeros_like(image), output_hidden_states=True
|
568 |
+
).hidden_states[-2]
|
569 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
570 |
+
num_images_per_prompt, dim=0
|
571 |
+
)
|
572 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
573 |
+
else:
|
574 |
+
image_embeds = self.image_encoder(image).image_embeds
|
575 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
576 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
577 |
+
|
578 |
+
return image_embeds, uncond_image_embeds
|
579 |
+
|
580 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
581 |
+
def prepare_ip_adapter_image_embeds(
|
582 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
583 |
+
):
|
584 |
+
image_embeds = []
|
585 |
+
if do_classifier_free_guidance:
|
586 |
+
negative_image_embeds = []
|
587 |
+
if ip_adapter_image_embeds is None:
|
588 |
+
if not isinstance(ip_adapter_image, list):
|
589 |
+
ip_adapter_image = [ip_adapter_image]
|
590 |
+
|
591 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
592 |
+
raise ValueError(
|
593 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
594 |
+
)
|
595 |
+
|
596 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
597 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
598 |
+
):
|
599 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
600 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
601 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
602 |
+
)
|
603 |
+
|
604 |
+
image_embeds.append(single_image_embeds[None, :])
|
605 |
+
if do_classifier_free_guidance:
|
606 |
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
607 |
+
else:
|
608 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
609 |
+
if do_classifier_free_guidance:
|
610 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
611 |
+
negative_image_embeds.append(single_negative_image_embeds)
|
612 |
+
image_embeds.append(single_image_embeds)
|
613 |
+
|
614 |
+
ip_adapter_image_embeds = []
|
615 |
+
for i, single_image_embeds in enumerate(image_embeds):
|
616 |
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
617 |
+
if do_classifier_free_guidance:
|
618 |
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
619 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
620 |
+
|
621 |
+
single_image_embeds = single_image_embeds.to(device=device)
|
622 |
+
ip_adapter_image_embeds.append(single_image_embeds)
|
623 |
+
|
624 |
+
return ip_adapter_image_embeds
|
625 |
+
|
626 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
627 |
+
def run_safety_checker(self, image, device, dtype):
|
628 |
+
if self.safety_checker is None:
|
629 |
+
has_nsfw_concept = None
|
630 |
+
else:
|
631 |
+
if torch.is_tensor(image):
|
632 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
633 |
+
else:
|
634 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
635 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
636 |
+
image, has_nsfw_concept = self.safety_checker(
|
637 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
638 |
+
)
|
639 |
+
return image, has_nsfw_concept
|
640 |
+
|
641 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
642 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
643 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
644 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
645 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
646 |
+
# and should be between [0, 1]
|
647 |
+
|
648 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
649 |
+
extra_step_kwargs = {}
|
650 |
+
if accepts_eta:
|
651 |
+
extra_step_kwargs["eta"] = eta
|
652 |
+
|
653 |
+
# check if the scheduler accepts generator
|
654 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
655 |
+
if accepts_generator:
|
656 |
+
extra_step_kwargs["generator"] = generator
|
657 |
+
return extra_step_kwargs
|
658 |
+
|
659 |
+
def check_inputs(
|
660 |
+
self,
|
661 |
+
prompt,
|
662 |
+
image,
|
663 |
+
mask_image,
|
664 |
+
height,
|
665 |
+
width,
|
666 |
+
strength,
|
667 |
+
callback_steps,
|
668 |
+
output_type,
|
669 |
+
negative_prompt=None,
|
670 |
+
prompt_embeds=None,
|
671 |
+
negative_prompt_embeds=None,
|
672 |
+
ip_adapter_image=None,
|
673 |
+
ip_adapter_image_embeds=None,
|
674 |
+
callback_on_step_end_tensor_inputs=None,
|
675 |
+
padding_mask_crop=None,
|
676 |
+
):
|
677 |
+
if strength < 0 or strength > 1:
|
678 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
679 |
+
|
680 |
+
if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0:
|
681 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
682 |
+
|
683 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
684 |
+
raise ValueError(
|
685 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
686 |
+
f" {type(callback_steps)}."
|
687 |
+
)
|
688 |
+
|
689 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
690 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
691 |
+
):
|
692 |
+
raise ValueError(
|
693 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
694 |
+
)
|
695 |
+
|
696 |
+
if prompt is not None and prompt_embeds is not None:
|
697 |
+
raise ValueError(
|
698 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
699 |
+
" only forward one of the two."
|
700 |
+
)
|
701 |
+
elif prompt is None and prompt_embeds is None:
|
702 |
+
raise ValueError(
|
703 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
704 |
+
)
|
705 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
706 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
707 |
+
|
708 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
709 |
+
raise ValueError(
|
710 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
711 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
712 |
+
)
|
713 |
+
|
714 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
715 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
716 |
+
raise ValueError(
|
717 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
718 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
719 |
+
f" {negative_prompt_embeds.shape}."
|
720 |
+
)
|
721 |
+
if padding_mask_crop is not None:
|
722 |
+
if not isinstance(image, PIL.Image.Image):
|
723 |
+
raise ValueError(
|
724 |
+
f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
|
725 |
+
)
|
726 |
+
if not isinstance(mask_image, PIL.Image.Image):
|
727 |
+
raise ValueError(
|
728 |
+
f"The mask image should be a PIL image when inpainting mask crop, but is of type"
|
729 |
+
f" {type(mask_image)}."
|
730 |
+
)
|
731 |
+
if output_type != "pil":
|
732 |
+
raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
|
733 |
+
|
734 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
735 |
+
raise ValueError(
|
736 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
737 |
+
)
|
738 |
+
|
739 |
+
if ip_adapter_image_embeds is not None:
|
740 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
741 |
+
raise ValueError(
|
742 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
743 |
+
)
|
744 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
745 |
+
raise ValueError(
|
746 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
747 |
+
)
|
748 |
+
|
749 |
+
def prepare_latents(
|
750 |
+
self,
|
751 |
+
batch_size,
|
752 |
+
num_channels_latents,
|
753 |
+
height,
|
754 |
+
width,
|
755 |
+
dtype,
|
756 |
+
device,
|
757 |
+
generator,
|
758 |
+
latents=None,
|
759 |
+
image=None,
|
760 |
+
timestep=None,
|
761 |
+
is_strength_max=True,
|
762 |
+
return_noise=False,
|
763 |
+
return_image_latents=False,
|
764 |
+
):
|
765 |
+
shape = (
|
766 |
+
batch_size,
|
767 |
+
num_channels_latents,
|
768 |
+
int(height) // self.vae_scale_factor,
|
769 |
+
int(width) // self.vae_scale_factor,
|
770 |
+
)
|
771 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
772 |
+
raise ValueError(
|
773 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
774 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
775 |
+
)
|
776 |
+
|
777 |
+
if (image is None or timestep is None) and not is_strength_max:
|
778 |
+
raise ValueError(
|
779 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
780 |
+
"However, either the image or the noise timestep has not been provided."
|
781 |
+
)
|
782 |
+
|
783 |
+
if return_image_latents or (latents is None and not is_strength_max):
|
784 |
+
image = image.to(device=device, dtype=dtype)
|
785 |
+
|
786 |
+
if image.shape[1] == 4:
|
787 |
+
image_latents = image
|
788 |
+
else:
|
789 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
790 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
791 |
+
|
792 |
+
if latents is None:
|
793 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
794 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
795 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
796 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
797 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
798 |
+
else:
|
799 |
+
noise = latents.to(device)
|
800 |
+
latents = noise * self.scheduler.init_noise_sigma
|
801 |
+
|
802 |
+
outputs = (latents,)
|
803 |
+
|
804 |
+
if return_noise:
|
805 |
+
outputs += (noise,)
|
806 |
+
|
807 |
+
if return_image_latents:
|
808 |
+
outputs += (image_latents,)
|
809 |
+
|
810 |
+
return outputs
|
811 |
+
|
812 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
813 |
+
if isinstance(generator, list):
|
814 |
+
image_latents = [
|
815 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
816 |
+
for i in range(image.shape[0])
|
817 |
+
]
|
818 |
+
image_latents = torch.cat(image_latents, dim=0)
|
819 |
+
else:
|
820 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
821 |
+
|
822 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
823 |
+
|
824 |
+
return image_latents
|
825 |
+
|
826 |
+
def prepare_mask_latents(
|
827 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
828 |
+
):
|
829 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
830 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
831 |
+
# and half precision
|
832 |
+
mask = torch.nn.functional.interpolate(
|
833 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
834 |
+
)
|
835 |
+
mask = mask.to(device=device, dtype=dtype)
|
836 |
+
|
837 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
838 |
+
|
839 |
+
if masked_image.shape[1] == 4:
|
840 |
+
masked_image_latents = masked_image
|
841 |
+
else:
|
842 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
843 |
+
|
844 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
845 |
+
if mask.shape[0] < batch_size:
|
846 |
+
if not batch_size % mask.shape[0] == 0:
|
847 |
+
raise ValueError(
|
848 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
849 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
850 |
+
" of masks that you pass is divisible by the total requested batch size."
|
851 |
+
)
|
852 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
853 |
+
if masked_image_latents.shape[0] < batch_size:
|
854 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
855 |
+
raise ValueError(
|
856 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
857 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
858 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
859 |
+
)
|
860 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
861 |
+
|
862 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
863 |
+
masked_image_latents = (
|
864 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
865 |
+
)
|
866 |
+
|
867 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
868 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
869 |
+
return mask, masked_image_latents
|
870 |
+
|
871 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
872 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
873 |
+
# get the original timestep using init_timestep
|
874 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
875 |
+
|
876 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
877 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
878 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
879 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
880 |
+
|
881 |
+
return timesteps, num_inference_steps - t_start
|
882 |
+
|
883 |
+
def _default_height_width(self, height, width, image):
|
884 |
+
# NOTE: It is possible that a list of images have different
|
885 |
+
# dimensions for each image, so just checking the first image
|
886 |
+
# is not _exactly_ correct, but it is simple.
|
887 |
+
while isinstance(image, list):
|
888 |
+
image = image[0]
|
889 |
+
|
890 |
+
if height is None:
|
891 |
+
if isinstance(image, PIL.Image.Image):
|
892 |
+
height = image.height
|
893 |
+
elif isinstance(image, torch.Tensor):
|
894 |
+
height = image.shape[-2]
|
895 |
+
|
896 |
+
# round down to nearest multiple of `self.adapter.downscale_factor`
|
897 |
+
height = (height // self.adapter.downscale_factor) * self.adapter.downscale_factor
|
898 |
+
|
899 |
+
if width is None:
|
900 |
+
if isinstance(image, PIL.Image.Image):
|
901 |
+
width = image.width
|
902 |
+
elif isinstance(image, torch.Tensor):
|
903 |
+
width = image.shape[-1]
|
904 |
+
|
905 |
+
# round down to nearest multiple of `self.adapter.downscale_factor`
|
906 |
+
width = (width // self.adapter.downscale_factor) * self.adapter.downscale_factor
|
907 |
+
|
908 |
+
return height, width
|
909 |
+
|
910 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
911 |
+
def get_guidance_scale_embedding(
|
912 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
913 |
+
) -> torch.Tensor:
|
914 |
+
"""
|
915 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
916 |
+
|
917 |
+
Args:
|
918 |
+
w (`torch.Tensor`):
|
919 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
920 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
921 |
+
Dimension of the embeddings to generate.
|
922 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
923 |
+
Data type of the generated embeddings.
|
924 |
+
|
925 |
+
Returns:
|
926 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
927 |
+
"""
|
928 |
+
assert len(w.shape) == 1
|
929 |
+
w = w * 1000.0
|
930 |
+
|
931 |
+
half_dim = embedding_dim // 2
|
932 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
933 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
934 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
935 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
936 |
+
if embedding_dim % 2 == 1: # zero pad
|
937 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
938 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
939 |
+
return emb
|
940 |
+
|
941 |
+
@property
|
942 |
+
def guidance_scale(self):
|
943 |
+
return self._guidance_scale
|
944 |
+
|
945 |
+
@property
|
946 |
+
def clip_skip(self):
|
947 |
+
return self._clip_skip
|
948 |
+
|
949 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
950 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
951 |
+
# corresponds to doing no classifier free guidance.
|
952 |
+
@property
|
953 |
+
def do_classifier_free_guidance(self):
|
954 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
955 |
+
|
956 |
+
@property
|
957 |
+
def cross_attention_kwargs(self):
|
958 |
+
return self._cross_attention_kwargs
|
959 |
+
|
960 |
+
@property
|
961 |
+
def num_timesteps(self):
|
962 |
+
return self._num_timesteps
|
963 |
+
|
964 |
+
@property
|
965 |
+
def interrupt(self):
|
966 |
+
return self._interrupt
|
967 |
+
|
968 |
+
@torch.no_grad()
|
969 |
+
def __call__(
|
970 |
+
self,
|
971 |
+
prompt: Union[str, List[str]] = None,
|
972 |
+
image: PipelineImageInput = None,
|
973 |
+
mask_image: PipelineImageInput = None,
|
974 |
+
masked_image_latents: torch.Tensor = None,
|
975 |
+
height: Optional[int] = None,
|
976 |
+
width: Optional[int] = None,
|
977 |
+
adapter_image: PipelineImageInput = None,
|
978 |
+
padding_mask_crop: Optional[int] = None,
|
979 |
+
strength: float = 1.0,
|
980 |
+
num_inference_steps: int = 50,
|
981 |
+
timesteps: List[int] = None,
|
982 |
+
sigmas: List[float] = None,
|
983 |
+
guidance_scale: float = 7.5,
|
984 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
985 |
+
num_images_per_prompt: Optional[int] = 1,
|
986 |
+
eta: float = 0.0,
|
987 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
988 |
+
latents: Optional[torch.Tensor] = None,
|
989 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
990 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
991 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
992 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
993 |
+
output_type: Optional[str] = "pil",
|
994 |
+
return_dict: bool = True,
|
995 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
996 |
+
adapter_conditioning_scale: Union[float, List[float]] = 1.0,
|
997 |
+
clip_skip: int = None,
|
998 |
+
callback_on_step_end: Optional[
|
999 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
1000 |
+
] = None,
|
1001 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1002 |
+
**kwargs,
|
1003 |
+
):
|
1004 |
+
r"""
|
1005 |
+
The call function to the pipeline for generation.
|
1006 |
+
|
1007 |
+
Args:
|
1008 |
+
prompt (`str` or `List[str]`, *optional*):
|
1009 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
1010 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
1011 |
+
`Image`, numpy array or tensor representing an image batch to be inpainted (which parts of the image to
|
1012 |
+
be masked out with `mask_image` and repainted according to `prompt`). For both numpy array and pytorch
|
1013 |
+
tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the
|
1014 |
+
expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the
|
1015 |
+
expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image latents as `image`, but
|
1016 |
+
if passing latents directly it is not encoded again.
|
1017 |
+
mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
1018 |
+
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
|
1019 |
+
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
|
1020 |
+
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
|
1021 |
+
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
|
1022 |
+
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
|
1023 |
+
1)`, or `(H, W)`.
|
1024 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1025 |
+
The height in pixels of the generated image.
|
1026 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1027 |
+
The width in pixels of the generated image.
|
1028 |
+
padding_mask_crop (`int`, *optional*, defaults to `None`):
|
1029 |
+
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
1030 |
+
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
|
1031 |
+
with the same aspect ration of the image and contains all masked area, and then expand that area based
|
1032 |
+
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
|
1033 |
+
resizing to the original image size for inpainting. This is useful when the masked area is small while
|
1034 |
+
the image is large and contain information irrelevant for inpainting, such as background.
|
1035 |
+
strength (`float`, *optional*, defaults to 1.0):
|
1036 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
1037 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
1038 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
1039 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
1040 |
+
essentially ignores `image`.
|
1041 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1042 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1043 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
1044 |
+
timesteps (`List[int]`, *optional*):
|
1045 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1046 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1047 |
+
passed will be used. Must be in descending order.
|
1048 |
+
sigmas (`List[float]`, *optional*):
|
1049 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
1050 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
1051 |
+
will be used.
|
1052 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1053 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
1054 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
1055 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1056 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
1057 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
1058 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1059 |
+
The number of images to generate per prompt.
|
1060 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1061 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
1062 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
1063 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1064 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1065 |
+
generation deterministic.
|
1066 |
+
latents (`torch.Tensor`, *optional*):
|
1067 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1068 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1069 |
+
tensor is generated by sampling using the supplied random `generator`.
|
1070 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1071 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1072 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
1073 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1074 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1075 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1076 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1077 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
1078 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1079 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1080 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1081 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1082 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1083 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1084 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1085 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1086 |
+
plain tuple.
|
1087 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1088 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1089 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1090 |
+
clip_skip (`int`, *optional*):
|
1091 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1092 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1093 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1094 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1095 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1096 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1097 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1098 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1099 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1100 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1101 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1102 |
+
Examples:
|
1103 |
+
|
1104 |
+
```py
|
1105 |
+
>>> import PIL
|
1106 |
+
>>> import requests
|
1107 |
+
>>> import torch
|
1108 |
+
>>> from io import BytesIO
|
1109 |
+
|
1110 |
+
>>> from diffusers import StableDiffusionInpaintPipeline
|
1111 |
+
|
1112 |
+
|
1113 |
+
>>> def download_image(url):
|
1114 |
+
... response = requests.get(url)
|
1115 |
+
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
1116 |
+
|
1117 |
+
|
1118 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
1119 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
1120 |
+
|
1121 |
+
>>> init_image = download_image(img_url).resize((512, 512))
|
1122 |
+
>>> mask_image = download_image(mask_url).resize((512, 512))
|
1123 |
+
|
1124 |
+
>>> pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
1125 |
+
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
1126 |
+
... )
|
1127 |
+
>>> pipe = pipe.to("cuda")
|
1128 |
+
|
1129 |
+
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
1130 |
+
>>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
|
1131 |
+
```
|
1132 |
+
|
1133 |
+
Returns:
|
1134 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1135 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
1136 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
1137 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
1138 |
+
"not-safe-for-work" (nsfw) content.
|
1139 |
+
"""
|
1140 |
+
height, width = self._default_height_width(height, width, adapter_image)
|
1141 |
+
device = self._execution_device
|
1142 |
+
|
1143 |
+
if isinstance(self.adapter, MultiAdapter):
|
1144 |
+
adapter_input = []
|
1145 |
+
|
1146 |
+
for one_image in adapter_image:
|
1147 |
+
one_image = _preprocess_adapter_image(one_image, height, width)
|
1148 |
+
one_image = one_image.to(device=device, dtype=self.adapter.dtype)
|
1149 |
+
adapter_input.append(one_image)
|
1150 |
+
else:
|
1151 |
+
adapter_input = _preprocess_adapter_image(adapter_image, height, width)
|
1152 |
+
adapter_input = adapter_input.to(device=device, dtype=self.adapter.dtype)
|
1153 |
+
|
1154 |
+
callback = kwargs.pop("callback", None)
|
1155 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1156 |
+
|
1157 |
+
if callback is not None:
|
1158 |
+
deprecate(
|
1159 |
+
"callback",
|
1160 |
+
"1.0.0",
|
1161 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1162 |
+
)
|
1163 |
+
if callback_steps is not None:
|
1164 |
+
deprecate(
|
1165 |
+
"callback_steps",
|
1166 |
+
"1.0.0",
|
1167 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1171 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1172 |
+
|
1173 |
+
# 0. Default height and width to unet
|
1174 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
1175 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
1176 |
+
|
1177 |
+
# 1. Check inputs
|
1178 |
+
self.check_inputs(
|
1179 |
+
prompt,
|
1180 |
+
image,
|
1181 |
+
mask_image,
|
1182 |
+
height,
|
1183 |
+
width,
|
1184 |
+
strength,
|
1185 |
+
callback_steps,
|
1186 |
+
output_type,
|
1187 |
+
negative_prompt,
|
1188 |
+
prompt_embeds,
|
1189 |
+
negative_prompt_embeds,
|
1190 |
+
ip_adapter_image,
|
1191 |
+
ip_adapter_image_embeds,
|
1192 |
+
callback_on_step_end_tensor_inputs,
|
1193 |
+
padding_mask_crop,
|
1194 |
+
)
|
1195 |
+
|
1196 |
+
self._guidance_scale = guidance_scale
|
1197 |
+
self._clip_skip = clip_skip
|
1198 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1199 |
+
self._interrupt = False
|
1200 |
+
|
1201 |
+
# 2. Define call parameters
|
1202 |
+
if prompt is not None and isinstance(prompt, str):
|
1203 |
+
batch_size = 1
|
1204 |
+
elif prompt is not None and isinstance(prompt, list):
|
1205 |
+
batch_size = len(prompt)
|
1206 |
+
else:
|
1207 |
+
batch_size = prompt_embeds.shape[0]
|
1208 |
+
|
1209 |
+
device = self._execution_device
|
1210 |
+
|
1211 |
+
# 3. Encode input prompt
|
1212 |
+
text_encoder_lora_scale = (
|
1213 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1214 |
+
)
|
1215 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
1216 |
+
prompt,
|
1217 |
+
device,
|
1218 |
+
num_images_per_prompt,
|
1219 |
+
self.do_classifier_free_guidance,
|
1220 |
+
negative_prompt,
|
1221 |
+
prompt_embeds=prompt_embeds,
|
1222 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1223 |
+
lora_scale=text_encoder_lora_scale,
|
1224 |
+
clip_skip=self.clip_skip,
|
1225 |
+
)
|
1226 |
+
# For classifier free guidance, we need to do two forward passes.
|
1227 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
1228 |
+
# to avoid doing two forward passes
|
1229 |
+
if self.do_classifier_free_guidance:
|
1230 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
1231 |
+
|
1232 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1233 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1234 |
+
ip_adapter_image,
|
1235 |
+
ip_adapter_image_embeds,
|
1236 |
+
device,
|
1237 |
+
batch_size * num_images_per_prompt,
|
1238 |
+
self.do_classifier_free_guidance,
|
1239 |
+
)
|
1240 |
+
|
1241 |
+
# 4. set timesteps
|
1242 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1243 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1244 |
+
)
|
1245 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
1246 |
+
num_inference_steps=num_inference_steps, strength=strength, device=device
|
1247 |
+
)
|
1248 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
1249 |
+
if num_inference_steps < 1:
|
1250 |
+
raise ValueError(
|
1251 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
1252 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
1253 |
+
)
|
1254 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
1255 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1256 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
1257 |
+
is_strength_max = strength == 1.0
|
1258 |
+
|
1259 |
+
# 5. Preprocess mask and image
|
1260 |
+
|
1261 |
+
if padding_mask_crop is not None:
|
1262 |
+
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
|
1263 |
+
resize_mode = "fill"
|
1264 |
+
else:
|
1265 |
+
crops_coords = None
|
1266 |
+
resize_mode = "default"
|
1267 |
+
|
1268 |
+
original_image = image
|
1269 |
+
init_image = self.image_processor.preprocess(
|
1270 |
+
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
|
1271 |
+
)
|
1272 |
+
init_image = init_image.to(dtype=torch.float32)
|
1273 |
+
|
1274 |
+
# 6. Prepare latent variables
|
1275 |
+
num_channels_latents = self.vae.config.latent_channels
|
1276 |
+
num_channels_unet = self.unet.config.in_channels
|
1277 |
+
return_image_latents = num_channels_unet == 4
|
1278 |
+
|
1279 |
+
latents_outputs = self.prepare_latents(
|
1280 |
+
batch_size * num_images_per_prompt,
|
1281 |
+
num_channels_latents,
|
1282 |
+
height,
|
1283 |
+
width,
|
1284 |
+
prompt_embeds.dtype,
|
1285 |
+
device,
|
1286 |
+
generator,
|
1287 |
+
latents,
|
1288 |
+
image=init_image,
|
1289 |
+
timestep=latent_timestep,
|
1290 |
+
is_strength_max=is_strength_max,
|
1291 |
+
return_noise=True,
|
1292 |
+
return_image_latents=return_image_latents,
|
1293 |
+
)
|
1294 |
+
|
1295 |
+
if return_image_latents:
|
1296 |
+
latents, noise, image_latents = latents_outputs
|
1297 |
+
else:
|
1298 |
+
latents, noise = latents_outputs
|
1299 |
+
|
1300 |
+
# 7. Prepare mask latent variables
|
1301 |
+
mask_condition = self.mask_processor.preprocess(
|
1302 |
+
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
1303 |
+
)
|
1304 |
+
|
1305 |
+
if masked_image_latents is None:
|
1306 |
+
masked_image = init_image * (mask_condition < 0.5)
|
1307 |
+
else:
|
1308 |
+
masked_image = masked_image_latents
|
1309 |
+
|
1310 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
1311 |
+
mask_condition,
|
1312 |
+
masked_image,
|
1313 |
+
batch_size * num_images_per_prompt,
|
1314 |
+
height,
|
1315 |
+
width,
|
1316 |
+
prompt_embeds.dtype,
|
1317 |
+
device,
|
1318 |
+
generator,
|
1319 |
+
self.do_classifier_free_guidance,
|
1320 |
+
)
|
1321 |
+
|
1322 |
+
# 8. Check that sizes of mask, masked image and latents match
|
1323 |
+
if num_channels_unet == 9:
|
1324 |
+
# default case for runwayml/stable-diffusion-inpainting
|
1325 |
+
num_channels_mask = mask.shape[1]
|
1326 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
1327 |
+
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
1328 |
+
raise ValueError(
|
1329 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
1330 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
1331 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
1332 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
1333 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
1334 |
+
)
|
1335 |
+
elif num_channels_unet != 4:
|
1336 |
+
raise ValueError(
|
1337 |
+
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
1338 |
+
)
|
1339 |
+
|
1340 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1341 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1342 |
+
|
1343 |
+
# 9.1 Add image embeds for IP-Adapter
|
1344 |
+
added_cond_kwargs = (
|
1345 |
+
{"image_embeds": image_embeds}
|
1346 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
|
1347 |
+
else None
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
# 9.2 Optionally get Guidance Scale Embedding
|
1351 |
+
timestep_cond = None
|
1352 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1353 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1354 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1355 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1356 |
+
).to(device=device, dtype=latents.dtype)
|
1357 |
+
|
1358 |
+
# 10. Denoising loop
|
1359 |
+
if isinstance(self.adapter, MultiAdapter):
|
1360 |
+
adapter_state = self.adapter(adapter_input, adapter_conditioning_scale)
|
1361 |
+
for k, v in enumerate(adapter_state):
|
1362 |
+
adapter_state[k] = v
|
1363 |
+
else:
|
1364 |
+
adapter_state = self.adapter(adapter_input)
|
1365 |
+
for k, v in enumerate(adapter_state):
|
1366 |
+
adapter_state[k] = v * adapter_conditioning_scale
|
1367 |
+
if num_images_per_prompt > 1:
|
1368 |
+
for k, v in enumerate(adapter_state):
|
1369 |
+
adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1)
|
1370 |
+
if self.do_classifier_free_guidance:
|
1371 |
+
for k, v in enumerate(adapter_state):
|
1372 |
+
adapter_state[k] = torch.cat([v] * 2, dim=0)
|
1373 |
+
|
1374 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1375 |
+
self._num_timesteps = len(timesteps)
|
1376 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1377 |
+
for i, t in enumerate(timesteps):
|
1378 |
+
if self.interrupt:
|
1379 |
+
continue
|
1380 |
+
|
1381 |
+
# expand the latents if we are doing classifier free guidance
|
1382 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1383 |
+
|
1384 |
+
# concat latents, mask, masked_image_latents in the channel dimension
|
1385 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1386 |
+
|
1387 |
+
if num_channels_unet == 9:
|
1388 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
1389 |
+
|
1390 |
+
# predict the noise residual
|
1391 |
+
noise_pred = self.unet(
|
1392 |
+
latent_model_input,
|
1393 |
+
t,
|
1394 |
+
encoder_hidden_states=prompt_embeds,
|
1395 |
+
timestep_cond=timestep_cond,
|
1396 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1397 |
+
added_cond_kwargs=added_cond_kwargs,
|
1398 |
+
down_intrablock_additional_residuals=[state.clone() for state in adapter_state],
|
1399 |
+
return_dict=False,
|
1400 |
+
)[0]
|
1401 |
+
|
1402 |
+
# perform guidance
|
1403 |
+
if self.do_classifier_free_guidance:
|
1404 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1405 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1406 |
+
|
1407 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1408 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1409 |
+
if num_channels_unet == 4:
|
1410 |
+
init_latents_proper = image_latents
|
1411 |
+
if self.do_classifier_free_guidance:
|
1412 |
+
init_mask, _ = mask.chunk(2)
|
1413 |
+
else:
|
1414 |
+
init_mask = mask
|
1415 |
+
|
1416 |
+
if i < len(timesteps) - 1:
|
1417 |
+
noise_timestep = timesteps[i + 1]
|
1418 |
+
init_latents_proper = self.scheduler.add_noise(
|
1419 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
1420 |
+
)
|
1421 |
+
|
1422 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1423 |
+
|
1424 |
+
if callback_on_step_end is not None:
|
1425 |
+
callback_kwargs = {}
|
1426 |
+
for k in callback_on_step_end_tensor_inputs:
|
1427 |
+
callback_kwargs[k] = locals()[k]
|
1428 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1429 |
+
|
1430 |
+
latents = callback_outputs.pop("latents", latents)
|
1431 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1432 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1433 |
+
mask = callback_outputs.pop("mask", mask)
|
1434 |
+
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
|
1435 |
+
|
1436 |
+
# call the callback, if provided
|
1437 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1438 |
+
progress_bar.update()
|
1439 |
+
if callback is not None and i % callback_steps == 0:
|
1440 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1441 |
+
callback(step_idx, t, latents)
|
1442 |
+
|
1443 |
+
if not output_type == "latent":
|
1444 |
+
condition_kwargs = {}
|
1445 |
+
if isinstance(self.vae, AsymmetricAutoencoderKL):
|
1446 |
+
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
|
1447 |
+
init_image_condition = init_image.clone()
|
1448 |
+
init_image = self._encode_vae_image(init_image, generator=generator)
|
1449 |
+
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype)
|
1450 |
+
condition_kwargs = {"image": init_image_condition, "mask": mask_condition}
|
1451 |
+
image = self.vae.decode(
|
1452 |
+
latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs
|
1453 |
+
)[0]
|
1454 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1455 |
+
else:
|
1456 |
+
image = latents
|
1457 |
+
has_nsfw_concept = None
|
1458 |
+
|
1459 |
+
if has_nsfw_concept is None:
|
1460 |
+
do_denormalize = [True] * image.shape[0]
|
1461 |
+
else:
|
1462 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1463 |
+
|
1464 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1465 |
+
|
1466 |
+
if padding_mask_crop is not None:
|
1467 |
+
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
|
1468 |
+
|
1469 |
+
# Offload all models
|
1470 |
+
self.maybe_free_model_hooks()
|
1471 |
+
|
1472 |
+
if not return_dict:
|
1473 |
+
return (image, has_nsfw_concept)
|
1474 |
+
|
1475 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|