zhiweili commited on
Commit
ca18077
1 Parent(s): 049f1dd
Files changed (2) hide show
  1. app.py +1 -1
  2. app_haircolor_img2img.py +160 -0
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import gradio as gr
2
 
3
- from app_haircolor_inpaint_15 import create_demo as create_demo_haircolor
4
 
5
  with gr.Blocks(css="style.css") as demo:
6
  with gr.Tabs():
 
1
  import gradio as gr
2
 
3
+ from app_haircolor_img2img import create_demo as create_demo_haircolor
4
 
5
  with gr.Blocks(css="style.css") as demo:
6
  with gr.Tabs():
app_haircolor_img2img.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ import time
4
+ import torch
5
+ import numpy as np
6
+
7
+ from PIL import Image
8
+ from segment_utils import(
9
+ segment_image,
10
+ restore_result,
11
+ )
12
+ from diffusers import (
13
+ StableDiffusionControlNetImg2ImgPipeline,
14
+ ControlNetModel,
15
+ DDIMScheduler,
16
+ DPMSolverMultistepScheduler,
17
+ EulerAncestralDiscreteScheduler,
18
+ UniPCMultistepScheduler,
19
+ )
20
+
21
+ from controlnet_aux import (
22
+ CannyDetector,
23
+ LineartDetector,
24
+ PidiNetDetector,
25
+ HEDdetector,
26
+ )
27
+
28
+ BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
29
+
30
+ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
31
+
32
+ DEFAULT_EDIT_PROMPT = "change to blue hair"
33
+ DEFAULT_NEGATIVE_PROMPT = "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting, poorly drawn face, bad face, fused face, ugly face, worst face, asymmetrical, unrealistic skin texture, bad proportions, out of frame, poorly drawn hands, cloned face, double face"
34
+
35
+ DEFAULT_CATEGORY = "hair"
36
+
37
+ canny_detector = CannyDetector()
38
+ lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
39
+ lineart_detector = lineart_detector.to(DEVICE)
40
+
41
+ pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
42
+ pidiNet_detector = pidiNet_detector.to(DEVICE)
43
+
44
+ hed_detector = HEDdetector.from_pretrained('lllyasviel/Annotators')
45
+ hed_detector = hed_detector.to(DEVICE)
46
+
47
+ controlnet = [
48
+ ControlNetModel.from_pretrained(
49
+ "lllyasviel/control_v11e_sd15_ip2p",
50
+ torch_dtype=torch.float16,
51
+ ),
52
+ ]
53
+
54
+ basepipeline = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
55
+ BASE_MODEL,
56
+ torch_dtype=torch.float16,
57
+ use_safetensors=True,
58
+ controlnet=controlnet,
59
+ )
60
+
61
+ basepipeline.scheduler = UniPCMultistepScheduler.from_config(basepipeline.scheduler.config)
62
+
63
+ basepipeline = basepipeline.to(DEVICE)
64
+
65
+ basepipeline.enable_model_cpu_offload()
66
+
67
+ @spaces.GPU(duration=30)
68
+ def image_to_image(
69
+ input_image: Image,
70
+ edit_prompt: str,
71
+ seed: int,
72
+ num_steps: int,
73
+ guidance_scale: float,
74
+ generate_size: int,
75
+ ):
76
+ run_task_time = 0
77
+ time_cost_str = ''
78
+ run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
79
+
80
+ # generator = torch.Generator(device=DEVICE).manual_seed(seed)
81
+ generated_image = basepipeline(
82
+ seeds=[seed],
83
+ # generator=generator,
84
+ prompt=edit_prompt,
85
+ negative_prompt=DEFAULT_NEGATIVE_PROMPT,
86
+ image=input_image,
87
+ height=generate_size,
88
+ width=generate_size,
89
+ guidance_scale=guidance_scale,
90
+ num_inference_steps=num_steps,
91
+ ).images[0]
92
+
93
+ run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
94
+
95
+ return generated_image, time_cost_str
96
+
97
+ def make_inpaint_condition(image, image_mask):
98
+ image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
99
+ image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
100
+
101
+ assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
102
+ image[image_mask > 0.5] = -1.0 # set as masked pixel
103
+ image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
104
+ image = torch.from_numpy(image)
105
+ return image
106
+
107
+ def get_time_cost(run_task_time, time_cost_str):
108
+ now_time = int(time.time()*1000)
109
+ if run_task_time == 0:
110
+ time_cost_str = 'start'
111
+ else:
112
+ if time_cost_str != '':
113
+ time_cost_str += f'-->'
114
+ time_cost_str += f'{now_time - run_task_time}'
115
+ run_task_time = now_time
116
+ return run_task_time, time_cost_str
117
+
118
+ def create_demo() -> gr.Blocks:
119
+ with gr.Blocks() as demo:
120
+ croper = gr.State()
121
+ with gr.Row():
122
+ with gr.Column():
123
+ edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
124
+ generate_size = gr.Number(label="Generate Size", value=512)
125
+ with gr.Column():
126
+ num_steps = gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Num Steps")
127
+ guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
128
+ with gr.Column():
129
+ with gr.Accordion("Advanced Options", open=False):
130
+ mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
131
+ mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
132
+ seed = gr.Number(label="Seed", value=8)
133
+ category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
134
+ g_btn = gr.Button("Edit Image")
135
+
136
+ with gr.Row():
137
+ with gr.Column():
138
+ input_image = gr.Image(label="Input Image", type="pil")
139
+ with gr.Column():
140
+ restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
141
+ with gr.Column():
142
+ origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
143
+ generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
144
+ generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
145
+
146
+ g_btn.click(
147
+ fn=segment_image,
148
+ inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
149
+ outputs=[origin_area_image, croper],
150
+ ).success(
151
+ fn=image_to_image,
152
+ inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, generate_size],
153
+ outputs=[generated_image, generated_cost],
154
+ ).success(
155
+ fn=restore_result,
156
+ inputs=[croper, category, generated_image],
157
+ outputs=[restored_image],
158
+ )
159
+
160
+ return demo