import spaces import gradio as gr import time import torch import numpy as np from PIL import Image from segment_utils import( segment_image, restore_result, ) from diffusers import ( StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, UniPCMultistepScheduler, ) from controlnet_aux import ( CannyDetector, LineartDetector, PidiNetDetector, HEDdetector, ) BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" DEFAULT_EDIT_PROMPT = "change hair to blue" DEFAULT_CATEGORY = "hair" canny_detector = CannyDetector() lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators") lineart_detector = lineart_detector.to(DEVICE) pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators') pidiNet_detector = pidiNet_detector.to(DEVICE) hed_detector = HEDdetector.from_pretrained('lllyasviel/Annotators') hed_detector = hed_detector.to(DEVICE) controlnet = [ ControlNetModel.from_pretrained( "lllyasviel/control_v11p_sd15_lineart", torch_dtype=torch.float16, ), ControlNetModel.from_pretrained( "lllyasviel/control_v11p_sd15_softedge", torch_dtype=torch.float16, ), ] basepipeline = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( BASE_MODEL, torch_dtype=torch.float16, use_safetensors=True, controlnet=controlnet, ) basepipeline.scheduler = UniPCMultistepScheduler.from_config(basepipeline.scheduler.config) basepipeline = basepipeline.to(DEVICE) basepipeline.enable_model_cpu_offload() @spaces.GPU(duration=30) def image_to_image( input_image: Image, edit_prompt: str, seed: int, num_steps: int, guidance_scale: float, strength: float, generate_size: int, cond_scale1: float = 1.2, cond_scale2: float = 1.2, ): run_task_time = 0 time_cost_str = '' run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) lineart_image = lineart_detector(input_image, 768, generate_size) pidinet_image = pidiNet_detector(input_image, 768, generate_size) cond_image = [lineart_image, pidinet_image] generator = torch.Generator(device=DEVICE).manual_seed(seed) generated_image = basepipeline( generator=generator, prompt=edit_prompt, image=input_image, control_image=cond_image, height=generate_size, width=generate_size, guidance_scale=guidance_scale, strength=strength, num_inference_steps=num_steps, controlnet_conditioning_scale=[cond_scale1, cond_scale2], ).images[0] run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) return generated_image, time_cost_str def make_inpaint_condition(image, image_mask): image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" image[image_mask > 0.5] = -1.0 # set as masked pixel image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) image = torch.from_numpy(image) return image def get_time_cost(run_task_time, time_cost_str): now_time = int(time.time()*1000) if run_task_time == 0: time_cost_str = 'start' else: if time_cost_str != '': time_cost_str += f'-->' time_cost_str += f'{now_time - run_task_time}' run_task_time = now_time return run_task_time, time_cost_str def create_demo() -> gr.Blocks: with gr.Blocks() as demo: croper = gr.State() with gr.Row(): with gr.Column(): edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) generate_size = gr.Number(label="Generate Size", value=512) with gr.Column(): num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps") guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale") strength = gr.Slider(minimum=0, maximum=3, value=0.2, step=0.1, label="Strength") with gr.Column(): with gr.Accordion("Advanced Options", open=False): mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True) mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation") seed = gr.Number(label="Seed", value=8) category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) cond_scale1 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Cond_scale1") cond_scale2 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Cond_scale2") g_btn = gr.Button("Edit Image") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") with gr.Column(): restored_image = gr.Image(label="Restored Image", type="pil", interactive=False) with gr.Column(): origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False) generated_image = gr.Image(label="Generated Image", type="pil", interactive=False) generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) g_btn.click( fn=segment_image, inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], outputs=[origin_area_image, croper], ).success( fn=image_to_image, inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, strength, generate_size, cond_scale1, cond_scale2], outputs=[generated_image, generated_cost], ).success( fn=restore_result, inputs=[croper, category, generated_image], outputs=[restored_image], ) return demo