import numpy as np import mediapipe as mp from PIL import Image from mediapipe.tasks import python from mediapipe.tasks.python import vision from scipy.ndimage import binary_dilation from croper import Croper segment_model = "checkpoints/selfie_multiclass_256x256.tflite" base_options = python.BaseOptions(model_asset_path=segment_model) options = vision.ImageSegmenterOptions(base_options=base_options,output_category_mask=True) segmenter = vision.ImageSegmenter.create_from_options(options) def restore_result(croper, category, generated_image): square_length = croper.square_length generated_image = generated_image.resize((square_length, square_length)) cropped_generated_image = generated_image.crop((croper.square_start_x, croper.square_start_y, croper.square_end_x, croper.square_end_y)) cropped_square_mask_image = get_restore_mask_image(croper, category, cropped_generated_image) restored_image = croper.input_image.copy() restored_image.paste(cropped_generated_image, (croper.origin_start_x, croper.origin_start_y), cropped_square_mask_image) return restored_image def segment_image(input_image, category, generate_size, mask_expansion, mask_dilation): mask_size = int(generate_size) mask_expansion = int(mask_expansion) image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(input_image)) segmentation_result = segmenter.segment(image) category_mask = segmentation_result.category_mask category_mask_np = category_mask.numpy_view() if category == "hair": target_mask = get_hair_mask(category_mask_np, mask_dilation) elif category == "clothes": target_mask = get_clothes_mask(category_mask_np, mask_dilation) elif category == "face": target_mask = get_face_mask(category_mask_np, mask_dilation) else: target_mask = get_face_mask(category_mask_np, mask_dilation) croper = Croper(input_image, target_mask, mask_size, mask_expansion) croper.corp_mask_image() origin_area_image = croper.resized_square_image return origin_area_image, croper def get_face_mask(category_mask_np, dilation=1): face_skin_mask = category_mask_np == 3 if dilation > 0: face_skin_mask = binary_dilation(face_skin_mask, iterations=dilation) return face_skin_mask def get_clothes_mask(category_mask_np, dilation=1): body_skin_mask = category_mask_np == 2 clothes_mask = category_mask_np == 4 combined_mask = np.logical_or(body_skin_mask, clothes_mask) combined_mask = binary_dilation(combined_mask, iterations=4) if dilation > 0: combined_mask = binary_dilation(combined_mask, iterations=dilation) return combined_mask def get_hair_mask(category_mask_np, dilation=1): hair_mask = category_mask_np == 1 if dilation > 0: hair_mask = binary_dilation(hair_mask, iterations=dilation) return hair_mask def get_restore_mask_image(croper, category, generated_image): image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(generated_image)) segmentation_result = segmenter.segment(image) category_mask = segmentation_result.category_mask category_mask_np = category_mask.numpy_view() if category == "hair": target_mask = get_hair_mask(category_mask_np, 0) elif category == "clothes": target_mask = get_clothes_mask(category_mask_np, 0) elif category == "face": target_mask = get_face_mask(category_mask_np, 0) combined_mask = np.logical_or(target_mask, croper.corp_mask) mask_image = Image.fromarray((combined_mask * 255).astype(np.uint8)) return mask_image