import spaces import gradio as gr import time import torch import numpy as np from tqdm.auto import tqdm from torchvision import transforms as tfms from PIL import Image from segment_utils import( segment_image, restore_result, ) from diffusers import ( StableDiffusionPipeline, DDIMScheduler, ) # BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5" # BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE" BASE_MODEL = "Lykon/DreamShaper" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" DEFAULT_INPUT_PROMPT = "a woman" DEFAULT_EDIT_PROMPT = "a woman with linen-blonde-hair" DEFAULT_CATEGORY = "hair" basepipeline = StableDiffusionPipeline.from_pretrained( BASE_MODEL, torch_dtype=torch.float16, # use_safetensors=True, ) basepipeline.scheduler = DDIMScheduler.from_config(basepipeline.scheduler.config) basepipeline = basepipeline.to(DEVICE) basepipeline.enable_model_cpu_offload() @spaces.GPU(duration=30) def image_to_image( input_image: Image, input_image_prompt: str, edit_prompt: str, num_steps: int, start_step: int, guidance_scale: float, ): run_task_time = 0 time_cost_str = '' run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) with torch.no_grad(): input_image_tensor = tfms.functional.to_tensor(input_image).unsqueeze(0).to(DEVICE) input_image_tensor = input_image_tensor.to(dtype=torch.float16) latent = basepipeline.vae.encode(input_image_tensor * 2 - 1) l = 0.18215 * latent.latent_dist.sample() inverted_latents = invert(l, input_image_prompt, num_inference_steps=num_steps) generated_image = sample( edit_prompt, start_latents=inverted_latents[-(start_step + 1)][None], start_step=start_step, num_inference_steps=num_steps, guidance_scale=guidance_scale, )[0] run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) return generated_image, time_cost_str def make_inpaint_condition(image, image_mask): image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" image[image_mask > 0.5] = -1.0 # set as masked pixel image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) image = torch.from_numpy(image) return image ## Inversion @torch.no_grad() def invert( start_latents, prompt, guidance_scale=3.5, num_inference_steps=80, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt="", device=DEVICE, ): # Encode prompt text_embeddings = basepipeline._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) # Latents are now the specified start latents latents = start_latents.clone() # We'll keep a list of the inverted latents as the process goes on intermediate_latents = [] # Set num inference steps basepipeline.scheduler.set_timesteps(num_inference_steps, device=device) # Reversed timesteps <<<<<<<<<<<<<<<<<<<< timesteps = reversed(basepipeline.scheduler.timesteps) for i in tqdm(range(1, num_inference_steps), total=num_inference_steps - 1): # We'll skip the final iteration if i >= num_inference_steps - 1: continue t = timesteps[i] # Expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = basepipeline.scheduler.scale_model_input(latent_model_input, t) # Predict the noise residual noise_pred = basepipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # Perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) current_t = max(0, t.item() - (1000 // num_inference_steps)) # t next_t = t # min(999, t.item() + (1000//num_inference_steps)) # t+1 alpha_t = basepipeline.scheduler.alphas_cumprod[current_t] alpha_t_next = basepipeline.scheduler.alphas_cumprod[next_t] # Inverted update step (re-arranging the update step to get x(t) (new latents) as a function of x(t-1) (current latents) latents = (latents - (1 - alpha_t).sqrt() * noise_pred) * (alpha_t_next.sqrt() / alpha_t.sqrt()) + ( 1 - alpha_t_next ).sqrt() * noise_pred # Store intermediate_latents.append(latents) return torch.cat(intermediate_latents) # Sample function (regular DDIM) @torch.no_grad() def sample( prompt, start_step=0, start_latents=None, guidance_scale=3.5, num_inference_steps=30, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt="", device=DEVICE, ): # Encode prompt text_embeddings = basepipeline._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) # Set num inference steps basepipeline.scheduler.set_timesteps(num_inference_steps, device=device) # Create a random starting point if we don't have one already if start_latents is None: start_latents = torch.randn(1, 4, 64, 64, device=device) start_latents *= basepipeline.scheduler.init_noise_sigma latents = start_latents.clone() for i in tqdm(range(start_step, num_inference_steps)): t = basepipeline.scheduler.timesteps[i] # Expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = basepipeline.scheduler.scale_model_input(latent_model_input, t) # Predict the noise residual noise_pred = basepipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # Perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # Normally we'd rely on the scheduler to handle the update step: # latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample # Instead, let's do it ourselves: prev_t = max(1, t.item() - (1000 // num_inference_steps)) # t-1 alpha_t = basepipeline.scheduler.alphas_cumprod[t.item()] alpha_t_prev = basepipeline.scheduler.alphas_cumprod[prev_t] predicted_x0 = (latents - (1 - alpha_t).sqrt() * noise_pred) / alpha_t.sqrt() direction_pointing_to_xt = (1 - alpha_t_prev).sqrt() * noise_pred latents = alpha_t_prev.sqrt() * predicted_x0 + direction_pointing_to_xt # Post-processing images = basepipeline.decode_latents(latents) images = basepipeline.numpy_to_pil(images) return images def get_time_cost(run_task_time, time_cost_str): now_time = int(time.time()*1000) if run_task_time == 0: time_cost_str = 'start' else: if time_cost_str != '': time_cost_str += f'-->' time_cost_str += f'{now_time - run_task_time}' run_task_time = now_time return run_task_time, time_cost_str def create_demo() -> gr.Blocks: with gr.Blocks() as demo: croper = gr.State() with gr.Row(): with gr.Column(): input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_INPUT_PROMPT) edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) with gr.Column(): num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps") start_step = gr.Slider(minimum=0, maximum=100, value=15, step=1, label="Start Step") guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale") with gr.Column(): generate_size = gr.Number(label="Generate Size", value=512) with gr.Accordion("Advanced Options", open=False): mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True) mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation") category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) g_btn = gr.Button("Edit Image") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") with gr.Column(): restored_image = gr.Image(label="Restored Image", type="pil", interactive=False) with gr.Column(): origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False) generated_image = gr.Image(label="Generated Image", type="pil", interactive=False) generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) g_btn.click( fn=segment_image, inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], outputs=[origin_area_image, croper], ).success( fn=image_to_image, inputs=[origin_area_image, input_image_prompt, edit_prompt, num_steps, start_step, guidance_scale], outputs=[generated_image, generated_cost], ).success( fn=restore_result, inputs=[croper, category, generated_image], outputs=[restored_image], ) return demo