import spaces import gradio as gr import os import torch import uuid from PIL import Image from enhance_utils import enhance_image DEFAULT_SRC_PROMPT = "a woman" DEFAULT_EDIT_PROMPT = "a woman, with red lips, 8k, high quality" device = "cuda" if torch.cuda.is_available() else "cpu" def create_demo() -> gr.Blocks: from inversion_run_adapter import run as adapter_run @spaces.GPU(duration=15) def image_to_image( input_image_path: str, input_image_prompt: str, edit_prompt: str, seed: int, w1: float, num_steps: int, start_step: int, guidance_scale: float, generate_size: int, lineart_scale: float, canny_scale: float, lineart_detect: float, canny_detect: float, ): w2 = 1.0 input_image = Image.open(input_image_path) w2 = 1.0 run_model = adapter_run generated_image = run_model( input_image, input_image_prompt, edit_prompt, generate_size, seed, w1, w2, num_steps, start_step, guidance_scale, lineart_scale, canny_scale, lineart_detect, canny_detect, ) enhanced_image = enhance_image(generated_image, False) tmpPrefix = "/tmp/gradio/" extension = 'png' # if enhanced_image.mode == 'RGBA': # extension = 'png' # else: # extension = 'jpg' targetDir = f"{tmpPrefix}output/" if not os.path.exists(targetDir): os.makedirs(targetDir) enhanced_path = f"{targetDir}{uuid.uuid4()}.{extension}" enhanced_image.save(enhanced_path, quality=100) return enhanced_path with gr.Blocks() as demo: with gr.Row(): with gr.Column(): input_image_path = gr.File(label="Input Image") with gr.Column(): generated_image_path = gr.File(label="Download the segment image", interactive=False) with gr.Row(): with gr.Column(): input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT) edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) with gr.Accordion("Advanced Options", open=False): guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale") seed = gr.Number(label="Seed", value=8) generate_size = gr.Number(label="Generate Size", value=1024) lineart_scale = gr.Slider(minimum=0, maximum=5, value=0.8, step=0.1, label="Lineart Weights", visible=True) canny_scale = gr.Slider(minimum=0, maximum=5, value=0.4, step=0.1, label="Canny Weights", visible=True) lineart_detect = gr.Number(label="Lineart Detect", value=0.375, visible=True) canny_detect = gr.Number(label="Canny Detect", value=0.375, visible=True) with gr.Column(): num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps") start_step = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Start Step") w1 = gr.Number(label="W1", value=2) g_btn = gr.Button("Edit Image") g_btn.click( fn=image_to_image, inputs=[input_image_path, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, lineart_scale, canny_scale, lineart_detect, canny_detect], outputs=[generated_image_path], ) return demo