import spaces import gradio as gr import torch import uuid import os from PIL import Image from enhance_utils import enhance_image DEFAULT_SRC_PROMPT = "a woman, photo" DEFAULT_EDIT_PROMPT = "a beautiful woman, photo, hollywood style face, 8k, high quality" device = "cuda" if torch.cuda.is_available() else "cpu" def create_demo() -> gr.Blocks: from inversion_run_base import run as base_run @spaces.GPU(duration=10) def image_to_image( input_image_path: str, input_image_prompt: str, edit_prompt: str, seed: int, w1: float, num_steps: int, start_step: int, guidance_scale: float, enhance_face: bool = True, ): w2 = 1.0 input_image = Image.open(input_image_path) run_model = base_run res_image = run_model( input_image, input_image_prompt, edit_prompt, seed, w1, w2, num_steps, start_step, guidance_scale, ) enhanced_image = enhance_image(res_image, enhance_face) tmpPrefix = "/tmp/gradio/" extension = 'png' if enhanced_image.mode == 'RGBA': extension = 'png' else: extension = 'jpg' targetDir = f"{tmpPrefix}output/" if not os.path.exists(targetDir): os.makedirs(targetDir) enhanced_path = f"{targetDir}{uuid.uuid4()}.{extension}" enhanced_image.save(enhanced_path, quality=100) return enhanced_path with gr.Blocks() as demo: with gr.Row(): with gr.Column(): input_image_path = gr.File(label="Input Image") with gr.Column(): generated_image_path = gr.File(label="Download the segment image", interactive=False) with gr.Row(): with gr.Column(): input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT) edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) with gr.Accordion("Advanced Options", open=False): guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale") enhance_face = gr.Checkbox(label="Enhance Face", value=False) seed = gr.Number(label="Seed", value=8) with gr.Column(): num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps") start_step = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Start Step") w1 = gr.Number(label="W1", value=2) g_btn = gr.Button("Edit Image") g_btn.click( fn=image_to_image, inputs=[input_image_path, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, enhance_face], outputs=[generated_image_path], ) return demo