File size: 27,974 Bytes
8fed764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
import torch
import os
import PIL

from typing import List, Optional, Union
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from PIL import Image
from diffusers.utils import logging

VECTOR_DATA_FOLDER = "vector_data"
VECTOR_DATA_DICT = "vector_data"

logger = logging.get_logger(__name__)

def get_ddpm_inversion_scheduler(
    scheduler,
    step_function,
    config,
    timesteps,
    save_timesteps,
    latents,
    x_ts,
    x_ts_c_hat,
    save_intermediate_results,
    pipe,
    x_0,
    v1s_images,
    v2s_images,
    deltas_images,
    v1_x0s,
    v2_x0s,
    deltas_x0s,
    folder_name,
    image_name,
    time_measure_n,
):
    def step(
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
        generator=None,
        variance_noise: Optional[torch.FloatTensor] = None,
        return_dict: bool = True,
    ):
        # if scheduler.is_save:
        # start = timer()
        res_inv =  step_save_latents(
            scheduler,
            model_output[:1, :, :, :],
            timestep,
            sample[:1, :, :, :],
            eta,
            use_clipped_model_output,
            generator,
            variance_noise,
            return_dict,
        )
        # end = timer()
        # print(f"Run Time Inv: {end - start}")

        res_inf = step_use_latents(
            scheduler,
            model_output[1:, :, :, :],
            timestep,
            sample[1:, :, :, :],
            eta,
            use_clipped_model_output,
            generator,
            variance_noise,
            return_dict,
        )
        # res = res_inv
        res = (torch.cat((res_inv[0], res_inf[0]), dim=0),)
        return res
        # return res

    scheduler.step_function = step_function
    scheduler.is_save = True
    scheduler._timesteps = timesteps
    scheduler._save_timesteps = save_timesteps if save_timesteps else timesteps
    scheduler._config = config
    scheduler.latents = latents
    scheduler.x_ts = x_ts
    scheduler.x_ts_c_hat = x_ts_c_hat
    scheduler.step = step
    scheduler.save_intermediate_results = save_intermediate_results
    scheduler.pipe = pipe
    scheduler.v1s_images = v1s_images
    scheduler.v2s_images = v2s_images
    scheduler.deltas_images = deltas_images
    scheduler.v1_x0s = v1_x0s
    scheduler.v2_x0s = v2_x0s
    scheduler.deltas_x0s = deltas_x0s
    scheduler.clean_step_run = False
    scheduler.x_0s = create_xts(
        config.noise_shift_delta,
        config.noise_timesteps,
        config.clean_step_timestep,
        None,
        pipe.scheduler,
        timesteps,
        x_0,
        no_add_noise=True,
    )
    scheduler.folder_name = folder_name
    scheduler.image_name = image_name
    scheduler.p_to_p = False
    scheduler.p_to_p_replace = False
    scheduler.time_measure_n = time_measure_n
    return scheduler

def step_save_latents(
    self,
    model_output: torch.FloatTensor,
    timestep: int,
    sample: torch.FloatTensor,
    eta: float = 0.0,
    use_clipped_model_output: bool = False,
    generator=None,
    variance_noise: Optional[torch.FloatTensor] = None,
    return_dict: bool = True,
):
    # print(self._save_timesteps)
    # timestep_index = map_timpstep_to_index[timestep]
    # timestep_index = ((self._save_timesteps == timestep).nonzero(as_tuple=True)[0]).item()
    timestep_index = self._save_timesteps.index(timestep) if not self.clean_step_run else -1
    next_timestep_index = timestep_index + 1 if not self.clean_step_run else -1
    u_hat_t = self.step_function(
        model_output=model_output,
        timestep=timestep,
        sample=sample,
        eta=eta,
        use_clipped_model_output=use_clipped_model_output,
        generator=generator,
        variance_noise=variance_noise,
        return_dict=False,
        scheduler=self,
    )

    x_t_minus_1 = self.x_ts[next_timestep_index]
    self.x_ts_c_hat.append(u_hat_t)

    z_t = x_t_minus_1 - u_hat_t
    self.latents.append(z_t)
    z_t, _ = normalize(z_t, timestep_index, self._config.max_norm_zs)

    x_t_minus_1_predicted = u_hat_t + z_t

    if not return_dict:
        return (x_t_minus_1_predicted,)

    return DDIMSchedulerOutput(prev_sample=x_t_minus_1, pred_original_sample=None)

def step_use_latents(
    self,
    model_output: torch.FloatTensor,
    timestep: int,
    sample: torch.FloatTensor,
    eta: float = 0.0,
    use_clipped_model_output: bool = False,
    generator=None,
    variance_noise: Optional[torch.FloatTensor] = None,
    return_dict: bool = True,
):
    # timestep_index = ((self._save_timesteps == timestep).nonzero(as_tuple=True)[0]).item()
    timestep_index = self._timesteps.index(timestep) if not self.clean_step_run else -1
    next_timestep_index = (
        timestep_index + 1 if not self.clean_step_run else -1
    )
    z_t = self.latents[next_timestep_index]  # + 1 because latents[0] is X_T

    _, normalize_coefficient = normalize(
        z_t[0] if self._config.breakdown == "x_t_hat_c_with_zeros" else z_t,
        timestep_index,
        self._config.max_norm_zs,
    )

    if normalize_coefficient == 0:
        eta = 0

    # eta = normalize_coefficient

    x_t_hat_c_hat = self.step_function(
        model_output=model_output,
        timestep=timestep,
        sample=sample,
        eta=eta,
        use_clipped_model_output=use_clipped_model_output,
        generator=generator,
        variance_noise=variance_noise,
        return_dict=False,
        scheduler=self,
    )

    w1 = self._config.ws1[timestep_index]
    w2 = self._config.ws2[timestep_index]

    x_t_minus_1_exact = self.x_ts[next_timestep_index]
    x_t_minus_1_exact = x_t_minus_1_exact.expand_as(x_t_hat_c_hat)

    x_t_c_hat: torch.Tensor = self.x_ts_c_hat[next_timestep_index]
    if self._config.breakdown == "x_t_c_hat":
        raise NotImplementedError("breakdown x_t_c_hat not implemented yet")

    # x_t_c_hat = x_t_c_hat.expand_as(x_t_hat_c_hat)
    x_t_c = x_t_c_hat[0].expand_as(x_t_hat_c_hat)

    # if self._config.breakdown == "x_t_c_hat":
    #     v1 = x_t_hat_c_hat - x_t_c_hat
    #     v2 = x_t_c_hat - x_t_c
    if (
        self._config.breakdown == "x_t_hat_c"
        or self._config.breakdown == "x_t_hat_c_with_zeros"
    ):
        zero_index_reconstruction = 1 if not self.time_measure_n else 0
        edit_prompts_num = (
            (model_output.size(0) - zero_index_reconstruction) // 3
            if self._config.breakdown == "x_t_hat_c_with_zeros" and not self.p_to_p
            else (model_output.size(0) - zero_index_reconstruction) // 2
        )
        x_t_hat_c_indices = (zero_index_reconstruction, edit_prompts_num + zero_index_reconstruction)
        edit_images_indices = (
            edit_prompts_num + zero_index_reconstruction,
            (
                model_output.size(0)
                if self._config.breakdown == "x_t_hat_c"
                else zero_index_reconstruction + 2 * edit_prompts_num
            ),
        )
        x_t_hat_c = torch.zeros_like(x_t_hat_c_hat)
        x_t_hat_c[edit_images_indices[0] : edit_images_indices[1]] = x_t_hat_c_hat[
            x_t_hat_c_indices[0] : x_t_hat_c_indices[1]
        ]
        v1 = x_t_hat_c_hat - x_t_hat_c
        v2 = x_t_hat_c - normalize_coefficient * x_t_c
        if self._config.breakdown == "x_t_hat_c_with_zeros" and not self.p_to_p:
            path = os.path.join(
                self.folder_name,
                VECTOR_DATA_FOLDER,
                self.image_name,
            )
            if not hasattr(self, VECTOR_DATA_DICT):
                os.makedirs(path, exist_ok=True)
                self.vector_data = dict()

            x_t_0 = x_t_c_hat[1]
            empty_prompt_indices = (1 + 2 * edit_prompts_num, 1 + 3 * edit_prompts_num)
            x_t_hat_0 = x_t_hat_c_hat[empty_prompt_indices[0] : empty_prompt_indices[1]]

            self.vector_data[timestep.item()] = dict()
            self.vector_data[timestep.item()]["x_t_hat_c"] = x_t_hat_c[
                edit_images_indices[0] : edit_images_indices[1]
            ]
            self.vector_data[timestep.item()]["x_t_hat_0"] = x_t_hat_0
            self.vector_data[timestep.item()]["x_t_c"] = x_t_c[0].expand_as(x_t_hat_0)
            self.vector_data[timestep.item()]["x_t_0"] = x_t_0.expand_as(x_t_hat_0)
            self.vector_data[timestep.item()]["x_t_hat_c_hat"] = x_t_hat_c_hat[
                edit_images_indices[0] : edit_images_indices[1]
            ]
            self.vector_data[timestep.item()]["x_t_minus_1_noisy"] = x_t_minus_1_exact[
                0
            ].expand_as(x_t_hat_0)
            self.vector_data[timestep.item()]["x_t_minus_1_clean"] = self.x_0s[
                next_timestep_index
            ].expand_as(x_t_hat_0)

    else:  # no breakdown
        v1 = x_t_hat_c_hat - normalize_coefficient * x_t_c
        v2 = 0

    if self.save_intermediate_results and not self.p_to_p:
        delta = v1 + v2
        v1_plus_x0 = self.x_0s[next_timestep_index] + v1
        v2_plus_x0 = self.x_0s[next_timestep_index] + v2
        delta_plus_x0 = self.x_0s[next_timestep_index] + delta

        v1_images = decode_latents(v1, self.pipe)
        self.v1s_images.append(v1_images)
        v2_images = (
            decode_latents(v2, self.pipe)
            if self._config.breakdown != "no_breakdown"
            else [PIL.Image.new("RGB", (1, 1))]
        )
        self.v2s_images.append(v2_images)
        delta_images = decode_latents(delta, self.pipe)
        self.deltas_images.append(delta_images)
        v1_plus_x0_images = decode_latents(v1_plus_x0, self.pipe)
        self.v1_x0s.append(v1_plus_x0_images)
        v2_plus_x0_images = (
            decode_latents(v2_plus_x0, self.pipe)
            if self._config.breakdown != "no_breakdown"
            else [PIL.Image.new("RGB", (1, 1))]
        )
        self.v2_x0s.append(v2_plus_x0_images)
        delta_plus_x0_images = decode_latents(delta_plus_x0, self.pipe)
        self.deltas_x0s.append(delta_plus_x0_images)

    # print(f"v1 norm: {torch.norm(v1, dim=0).mean()}")
    # if self._config.breakdown != "no_breakdown":
    #     print(f"v2 norm: {torch.norm(v2, dim=0).mean()}")
    #     print(f"v sum norm: {torch.norm(v1 + v2, dim=0).mean()}")

    x_t_minus_1 = normalize_coefficient * x_t_minus_1_exact + w1 * v1 + w2 * v2

    if (
        self._config.breakdown == "x_t_hat_c"
        or self._config.breakdown == "x_t_hat_c_with_zeros"
    ):
        x_t_minus_1[x_t_hat_c_indices[0] : x_t_hat_c_indices[1]] = x_t_minus_1[
            edit_images_indices[0] : edit_images_indices[1]
        ] # update x_t_hat_c to be x_t_hat_c_hat
        if self._config.breakdown == "x_t_hat_c_with_zeros" and not self.p_to_p:
            x_t_minus_1[empty_prompt_indices[0] : empty_prompt_indices[1]] = (
                x_t_minus_1[edit_images_indices[0] : edit_images_indices[1]]
            )
            self.vector_data[timestep.item()]["x_t_minus_1_edited"] = x_t_minus_1[
                edit_images_indices[0] : edit_images_indices[1]
            ]
            if timestep == self._timesteps[-1]:
                torch.save(
                    self.vector_data,
                    os.path.join(
                        path,
                        f"{VECTOR_DATA_DICT}.pt",
                    ),
                )
    # p_to_p_force_perfect_reconstruction
    if not self.time_measure_n:
        x_t_minus_1[0] = x_t_minus_1_exact[0]

    if not return_dict:
        return (x_t_minus_1,)

    return DDIMSchedulerOutput(
        prev_sample=x_t_minus_1,
        pred_original_sample=None,
    )

def create_xts(
    noise_shift_delta,
    noise_timesteps,
    clean_step_timestep,
    generator,
    scheduler,
    timesteps,
    x_0,
    no_add_noise=False,
):
    if noise_timesteps is None:
        noising_delta = noise_shift_delta * (timesteps[0] - timesteps[1])
        noise_timesteps = [timestep - int(noising_delta) for timestep in timesteps]

    first_x_0_idx = len(noise_timesteps)
    for i in range(len(noise_timesteps)):
        if noise_timesteps[i] <= 0:
            first_x_0_idx = i
            break

    noise_timesteps = noise_timesteps[:first_x_0_idx]

    x_0_expanded = x_0.expand(len(noise_timesteps), -1, -1, -1)
    noise = (
        torch.randn(x_0_expanded.size(), generator=generator, device="cpu").to(
            x_0.device
        )
        if not no_add_noise
        else torch.zeros_like(x_0_expanded)
    )
    x_ts = scheduler.add_noise(
        x_0_expanded,
        noise,
        torch.IntTensor(noise_timesteps),
    )
    x_ts = [t.unsqueeze(dim=0) for t in list(x_ts)]
    x_ts += [x_0] * (len(timesteps) - first_x_0_idx)
    x_ts += [x_0]
    if clean_step_timestep > 0:
        x_ts += [x_0]
    return x_ts

def normalize(
    z_t,
    i,
    max_norm_zs,
):
    max_norm = max_norm_zs[i]
    if max_norm < 0:
        return z_t, 1

    norm = torch.norm(z_t)
    if norm < max_norm:
        return z_t, 1

    coeff = max_norm / norm
    z_t = z_t * coeff
    return z_t, coeff

def decode_latents(latent, pipe):
    latent_img = pipe.vae.decode(
        latent / pipe.vae.config.scaling_factor, return_dict=False
    )[0]
    return pipe.image_processor.postprocess(latent_img, output_type="pil")

def deterministic_ddim_step(
    model_output: torch.FloatTensor,
    timestep: int,
    sample: torch.FloatTensor,
    eta: float = 0.0,
    use_clipped_model_output: bool = False,
    generator=None,
    variance_noise: Optional[torch.FloatTensor] = None,
    return_dict: bool = True,
    scheduler=None,
):

    if scheduler.num_inference_steps is None:
        raise ValueError(
            "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
        )

    prev_timestep = (
        timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
    )

    # 2. compute alphas, betas
    alpha_prod_t = scheduler.alphas_cumprod[timestep]
    alpha_prod_t_prev = (
        scheduler.alphas_cumprod[prev_timestep]
        if prev_timestep >= 0
        else scheduler.final_alpha_cumprod
    )

    beta_prod_t = 1 - alpha_prod_t

    if scheduler.config.prediction_type == "epsilon":
        pred_original_sample = (
            sample - beta_prod_t ** (0.5) * model_output
        ) / alpha_prod_t ** (0.5)
        pred_epsilon = model_output
    elif scheduler.config.prediction_type == "sample":
        pred_original_sample = model_output
        pred_epsilon = (
            sample - alpha_prod_t ** (0.5) * pred_original_sample
        ) / beta_prod_t ** (0.5)
    elif scheduler.config.prediction_type == "v_prediction":
        pred_original_sample = (alpha_prod_t**0.5) * sample - (
            beta_prod_t**0.5
        ) * model_output
        pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
    else:
        raise ValueError(
            f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, `sample`, or"
            " `v_prediction`"
        )

    # 4. Clip or threshold "predicted x_0"
    if scheduler.config.thresholding:
        pred_original_sample = scheduler._threshold_sample(pred_original_sample)
    elif scheduler.config.clip_sample:
        pred_original_sample = pred_original_sample.clamp(
            -scheduler.config.clip_sample_range,
            scheduler.config.clip_sample_range,
        )

    # 5. compute variance: "sigma_t(η)" -> see formula (16)
    # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
    variance = scheduler._get_variance(timestep, prev_timestep)
    std_dev_t = eta * variance ** (0.5)

    if use_clipped_model_output:
        # the pred_epsilon is always re-derived from the clipped x_0 in Glide
        pred_epsilon = (
            sample - alpha_prod_t ** (0.5) * pred_original_sample
        ) / beta_prod_t ** (0.5)

    # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (
        0.5
    ) * pred_epsilon

    # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    prev_sample = (
        alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
    )
    return prev_sample


def deterministic_euler_step(
    model_output: torch.FloatTensor,
    timestep: Union[float, torch.FloatTensor],
    sample: torch.FloatTensor,
    eta,
    use_clipped_model_output,
    generator,
    variance_noise,
    return_dict,
    scheduler,
):
    """
    Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
    process from the learned model outputs (most often the predicted noise).

    Args:
        model_output (`torch.FloatTensor`):
            The direct output from learned diffusion model.
        timestep (`float`):
            The current discrete timestep in the diffusion chain.
        sample (`torch.FloatTensor`):
            A current instance of a sample created by the diffusion process.
        generator (`torch.Generator`, *optional*):
            A random number generator.
        return_dict (`bool`):
            Whether or not to return a
            [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.

    Returns:
        [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
            If return_dict is `True`,
            [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
            otherwise a tuple is returned where the first element is the sample tensor.

    """

    if (
        isinstance(timestep, int)
        or isinstance(timestep, torch.IntTensor)
        or isinstance(timestep, torch.LongTensor)
    ):
        raise ValueError(
            (
                "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                " one of the `scheduler.timesteps` as a timestep."
            ),
        )

    if scheduler.step_index is None:
        scheduler._init_step_index(timestep)

    sigma = scheduler.sigmas[scheduler.step_index]

    # Upcast to avoid precision issues when computing prev_sample
    sample = sample.to(torch.float32)

    # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
    if scheduler.config.prediction_type == "epsilon":
        pred_original_sample = sample - sigma * model_output
    elif scheduler.config.prediction_type == "v_prediction":
        # * c_out + input * c_skip
        pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (
            sample / (sigma**2 + 1)
        )
    elif scheduler.config.prediction_type == "sample":
        raise NotImplementedError("prediction_type not implemented yet: sample")
    else:
        raise ValueError(
            f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
        )

    sigma_from = scheduler.sigmas[scheduler.step_index]
    sigma_to = scheduler.sigmas[scheduler.step_index + 1]
    sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
    sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5

    # 2. Convert to an ODE derivative
    derivative = (sample - pred_original_sample) / sigma

    dt = sigma_down - sigma

    prev_sample = sample + derivative * dt

    # Cast sample back to model compatible dtype
    prev_sample = prev_sample.to(model_output.dtype)

    # upon completion increase step index by one
    scheduler._step_index += 1

    return prev_sample


def deterministic_non_ancestral_euler_step(
    model_output: torch.FloatTensor,
    timestep: Union[float, torch.FloatTensor],
    sample: torch.FloatTensor,
    eta: float = 0.0,
    use_clipped_model_output: bool = False,
    s_churn: float = 0.0,
    s_tmin: float = 0.0,
    s_tmax: float = float("inf"),
    s_noise: float = 1.0,
    generator: Optional[torch.Generator] = None,
    variance_noise: Optional[torch.FloatTensor] = None,
    return_dict: bool = True,
    scheduler=None,
):
    """
    Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
    process from the learned model outputs (most often the predicted noise).

    Args:
        model_output (`torch.FloatTensor`):
            The direct output from learned diffusion model.
        timestep (`float`):
            The current discrete timestep in the diffusion chain.
        sample (`torch.FloatTensor`):
            A current instance of a sample created by the diffusion process.
        s_churn (`float`):
        s_tmin  (`float`):
        s_tmax  (`float`):
        s_noise (`float`, defaults to 1.0):
            Scaling factor for noise added to the sample.
        generator (`torch.Generator`, *optional*):
            A random number generator.
        return_dict (`bool`):
            Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
            tuple.

    Returns:
        [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
            If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
            returned, otherwise a tuple is returned where the first element is the sample tensor.
    """

    if (
        isinstance(timestep, int)
        or isinstance(timestep, torch.IntTensor)
        or isinstance(timestep, torch.LongTensor)
    ):
        raise ValueError(
            (
                "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                " one of the `scheduler.timesteps` as a timestep."
            ),
        )

    if not scheduler.is_scale_input_called:
        logger.warning(
            "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
            "See `StableDiffusionPipeline` for a usage example."
        )

    if scheduler.step_index is None:
        scheduler._init_step_index(timestep)

    # Upcast to avoid precision issues when computing prev_sample
    sample = sample.to(torch.float32)

    sigma = scheduler.sigmas[scheduler.step_index]

    gamma = (
        min(s_churn / (len(scheduler.sigmas) - 1), 2**0.5 - 1)
        if s_tmin <= sigma <= s_tmax
        else 0.0
    )

    sigma_hat = sigma * (gamma + 1)

    # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
    # NOTE: "original_sample" should not be an expected prediction_type but is left in for
    # backwards compatibility
    if (
        scheduler.config.prediction_type == "original_sample"
        or scheduler.config.prediction_type == "sample"
    ):
        pred_original_sample = model_output
    elif scheduler.config.prediction_type == "epsilon":
        pred_original_sample = sample - sigma_hat * model_output
    elif scheduler.config.prediction_type == "v_prediction":
        # denoised = model_output * c_out + input * c_skip
        pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (
            sample / (sigma**2 + 1)
        )
    else:
        raise ValueError(
            f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
        )

    # 2. Convert to an ODE derivative
    derivative = (sample - pred_original_sample) / sigma_hat

    dt = scheduler.sigmas[scheduler.step_index + 1] - sigma_hat

    prev_sample = sample + derivative * dt

    # Cast sample back to model compatible dtype
    prev_sample = prev_sample.to(model_output.dtype)

    # upon completion increase step index by one
    scheduler._step_index += 1

    return prev_sample


def deterministic_ddpm_step(
    model_output: torch.FloatTensor,
    timestep: Union[float, torch.FloatTensor],
    sample: torch.FloatTensor,
    eta,
    use_clipped_model_output,
    generator,
    variance_noise,
    return_dict,
    scheduler,
):
    """
    Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
    process from the learned model outputs (most often the predicted noise).

    Args:
        model_output (`torch.FloatTensor`):
            The direct output from learned diffusion model.
        timestep (`float`):
            The current discrete timestep in the diffusion chain.
        sample (`torch.FloatTensor`):
            A current instance of a sample created by the diffusion process.
        generator (`torch.Generator`, *optional*):
            A random number generator.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.

    Returns:
        [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
            If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
            tuple is returned where the first element is the sample tensor.

    """
    t = timestep

    prev_t = scheduler.previous_timestep(t)

    if model_output.shape[1] == sample.shape[1] * 2 and scheduler.variance_type in [
        "learned",
        "learned_range",
    ]:
        model_output, predicted_variance = torch.split(
            model_output, sample.shape[1], dim=1
        )
    else:
        predicted_variance = None

    # 1. compute alphas, betas
    alpha_prod_t = scheduler.alphas_cumprod[t]
    alpha_prod_t_prev = (
        scheduler.alphas_cumprod[prev_t] if prev_t >= 0 else scheduler.one
    )
    beta_prod_t = 1 - alpha_prod_t
    beta_prod_t_prev = 1 - alpha_prod_t_prev
    current_alpha_t = alpha_prod_t / alpha_prod_t_prev
    current_beta_t = 1 - current_alpha_t

    # 2. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
    if scheduler.config.prediction_type == "epsilon":
        pred_original_sample = (
            sample - beta_prod_t ** (0.5) * model_output
        ) / alpha_prod_t ** (0.5)
    elif scheduler.config.prediction_type == "sample":
        pred_original_sample = model_output
    elif scheduler.config.prediction_type == "v_prediction":
        pred_original_sample = (alpha_prod_t**0.5) * sample - (
            beta_prod_t**0.5
        ) * model_output
    else:
        raise ValueError(
            f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, `sample` or"
            " `v_prediction`  for the DDPMScheduler."
        )

    # 3. Clip or threshold "predicted x_0"
    if scheduler.config.thresholding:
        pred_original_sample = scheduler._threshold_sample(pred_original_sample)
    elif scheduler.config.clip_sample:
        pred_original_sample = pred_original_sample.clamp(
            -scheduler.config.clip_sample_range, scheduler.config.clip_sample_range
        )

    # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
    # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
    pred_original_sample_coeff = (
        alpha_prod_t_prev ** (0.5) * current_beta_t
    ) / beta_prod_t
    current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t

    # 5. Compute predicted previous sample µ_t
    # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
    pred_prev_sample = (
        pred_original_sample_coeff * pred_original_sample
        + current_sample_coeff * sample
    )

    return pred_prev_sample