File size: 6,151 Bytes
fd86234
 
 
 
 
 
 
 
 
 
 
 
 
 
c00388f
 
fd86234
 
 
 
 
 
 
 
 
 
8fda951
ace9e93
 
 
 
 
 
 
7386f72
ace9e93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd86234
 
 
 
 
 
 
 
e4f596a
 
fd86234
87bd420
3ac4efe
fd86234
 
87bd420
 
fd86234
 
e4f596a
fd86234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ac4efe
fd86234
 
 
3ac4efe
fd86234
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import spaces
import gradio as gr
import time
import torch
import os
import numpy as np
import cv2

from PIL import Image
from segment_utils import(
    segment_image,
    restore_result,
)
from gfpgan.utils import GFPGANer
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from realesrgan.utils import RealESRGANer


DEFAULT_SRC_PROMPT = "a woman, photo"
DEFAULT_EDIT_PROMPT = "a beautiful woman, photo, hollywood style face, 8k, high quality"

DEFAULT_CATEGORY = "face"

device = "cuda" if torch.cuda.is_available() else "cpu"

def create_demo() -> gr.Blocks:
    from inversion_run_base import run as base_run
    model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
    model_path = 'realesr-general-x4v3.pth'
    half = True if torch.cuda.is_available() else False
    upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)

    face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=1, arch='clean', channel_multiplier=2)

    @spaces.GPU(duration=10)
    def image_to_image(
        input_image: Image,
        input_image_prompt: str,
        edit_prompt: str,
        seed: int,
        w1: float,
        num_steps: int,
        start_step: int,
        guidance_scale: float,
        generate_size: int,
        adapter_weights: float,
        enhance_face: bool = True,
    ):
        w2 = 1.0
        run_task_time = 0
        time_cost_str = ''
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        run_model = base_run
        res_image = run_model(
            input_image,
            input_image_prompt,
            edit_prompt,
            generate_size,
            seed,
            w1,
            w2,
            num_steps,
            start_step,
            guidance_scale,
            adapter_weights,
        )
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        enhanced_image = enhance(res_image, enhance_face)
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

        return enhanced_image, res_image, time_cost_str

    def get_time_cost(run_task_time, time_cost_str):
        now_time = int(time.time()*1000)
        if run_task_time == 0:
            time_cost_str = 'start'
        else:
            if time_cost_str != '': 
                time_cost_str += f'-->'
            time_cost_str += f'{now_time - run_task_time}'
        run_task_time = now_time
        return run_task_time, time_cost_str


    def enhance(
        pil_image: Image,
        enhance_face: bool = True,
    ):
        img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)

        h, w = img.shape[0:2]
        if h < 300:
            img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
        if enhance_face:
            _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=True, paste_back=True)
        else:
            output, _ = upsampler.enhance(img, outscale=2)
        pil_output = Image.fromarray(cv2.cvtColor(output, cv2.COLOR_BGR2RGB))

        return pil_output

    with gr.Blocks() as demo:
        croper = gr.State()
        with gr.Row():
            with gr.Column():
                input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
                edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
                category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
            with gr.Column():
                num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
                start_step = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Start Step")
                with gr.Accordion("Advanced Options", open=False):
                    guidance_scale = gr.Slider(minimum=0, maximum=20, value=1, step=0.5, label="Guidance Scale")
                    generate_size = gr.Number(label="Generate Size", value=512)
                    mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
                    mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
                    enhance_face = gr.Checkbox(label="Enhance Face", value=True)
                    adapter_weights = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Adapter Weights", visible=False)
            with gr.Column():
                seed = gr.Number(label="Seed", value=8)
                w1 = gr.Number(label="W1", value=2)
                g_btn = gr.Button("Edit Image")
                
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", type="pil")
            with gr.Column():
                restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
                download_path = gr.File(label="Download the output image", interactive=False)
            with gr.Column():
                origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
                enhanced_image = gr.Image(label="Enhanced Image", type="pil", interactive=False)
                generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
                generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
        
        g_btn.click(
            fn=segment_image,
            inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
            outputs=[origin_area_image, croper],
        ).success(
            fn=image_to_image,
            inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, adapter_weights, enhance_face],
            outputs=[enhanced_image, generated_image, generated_cost],
        ).success(
            fn=restore_result,
            inputs=[croper, category, enhanced_image],
            outputs=[restored_image, download_path],
        )

    return demo