Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
import time | |
import torch | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from segment_utils import( | |
segment_image, | |
restore_result, | |
) | |
from gfpgan.utils import GFPGANer | |
from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
from realesrgan.utils import RealESRGANer | |
DEFAULT_SRC_PROMPT = "a woman" | |
DEFAULT_EDIT_PROMPT = "a woman, with blue hair, 8k, high quality" | |
DEFAULT_CATEGORY = "hair" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def create_demo() -> gr.Blocks: | |
from inversion_run_realvxl_adapter import run as realvxl_run | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
model_path = 'realesr-general-x4v3.pth' | |
half = True if torch.cuda.is_available() else False | |
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) | |
def image_to_image( | |
input_image: Image, | |
input_image_prompt: str, | |
edit_prompt: str, | |
seed: int, | |
w1: float, | |
num_steps: int, | |
start_step: int, | |
guidance_scale: float, | |
generate_size: int, | |
adapter_weights: float, | |
): | |
w2 = 1.0 | |
run_task_time = 0 | |
time_cost_str = '' | |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
run_model = realvxl_run | |
res_image = run_model( | |
input_image, | |
input_image_prompt, | |
edit_prompt, | |
generate_size, | |
seed, | |
w1, | |
w2, | |
num_steps, | |
start_step, | |
guidance_scale, | |
adapter_weights, | |
) | |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
enhanced_image = enhance(res_image) | |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
return enhanced_image, res_image, time_cost_str | |
def get_time_cost(run_task_time, time_cost_str): | |
now_time = int(time.time()*1000) | |
if run_task_time == 0: | |
time_cost_str = 'start' | |
else: | |
if time_cost_str != '': | |
time_cost_str += f'-->' | |
time_cost_str += f'{now_time - run_task_time}' | |
run_task_time = now_time | |
return run_task_time, time_cost_str | |
def enhance( | |
pil_image: Image, | |
): | |
img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) | |
h, w = img.shape[0:2] | |
if h < 300: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
output, _ = upsampler.enhance(img, outscale=2) | |
pil_output = Image.fromarray(cv2.cvtColor(output, cv2.COLOR_BGR2RGB)) | |
return pil_output | |
with gr.Blocks() as demo: | |
croper = gr.State() | |
with gr.Row(): | |
with gr.Column(): | |
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT) | |
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) | |
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) | |
with gr.Column(): | |
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps") | |
start_step = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Start Step") | |
with gr.Accordion("Advanced Options", open=False): | |
guidance_scale = gr.Slider(minimum=0, maximum=20, value=1, step=0.5, label="Guidance Scale") | |
generate_size = gr.Number(label="Generate Size", value=512) | |
mask_expansion = gr.Number(label="Mask Expansion", value=10, visible=True) | |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation") | |
adapter_weights = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Adapter Weights", visible=True) | |
with gr.Column(): | |
seed = gr.Number(label="Seed", value=8) | |
w1 = gr.Number(label="W1", value=2) | |
g_btn = gr.Button("Edit Image") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image", type="pil") | |
with gr.Column(): | |
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False) | |
download_path = gr.File(label="Download the output image", interactive=False) | |
with gr.Column(): | |
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False) | |
enhanced_image = gr.Image(label="Enhanced Image", type="pil", interactive=False) | |
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) | |
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False) | |
g_btn.click( | |
fn=segment_image, | |
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], | |
outputs=[origin_area_image, croper], | |
).success( | |
fn=image_to_image, | |
inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, adapter_weights], | |
outputs=[enhanced_image, generated_image, generated_cost], | |
).success( | |
fn=restore_result, | |
inputs=[croper, category, enhanced_image], | |
outputs=[restored_image, download_path], | |
) | |
return demo |