Spaces:
Sleeping
Sleeping
import numpy as np | |
import mediapipe as mp | |
import uuid | |
from PIL import Image | |
from mediapipe.tasks import python | |
from mediapipe.tasks.python import vision | |
from scipy.ndimage import binary_dilation | |
from croper import Croper | |
segment_model = "checkpoints/selfie_multiclass_256x256.tflite" | |
base_options = python.BaseOptions(model_asset_path=segment_model) | |
options = vision.ImageSegmenterOptions(base_options=base_options,output_category_mask=True) | |
segmenter = vision.ImageSegmenter.create_from_options(options) | |
def restore_result(croper, category, generated_image): | |
square_length = croper.square_length | |
generated_image = generated_image.resize((square_length, square_length)) | |
cropped_generated_image = generated_image.crop((croper.square_start_x, croper.square_start_y, croper.square_end_x, croper.square_end_y)) | |
cropped_square_mask_image = get_restore_mask_image(croper, category, cropped_generated_image) | |
restored_image = croper.input_image.copy() | |
restored_image.paste(cropped_generated_image, (croper.origin_start_x, croper.origin_start_y), cropped_square_mask_image) | |
extension = 'png' | |
if restored_image.mode == 'RGBA': | |
extension = 'png' | |
else: | |
extension = 'jpg' | |
path = f"output/{uuid.uuid4()}.{extension}" | |
restored_image.save(path) | |
return restored_image, path | |
def segment_image(input_image, category, input_size, mask_expansion, mask_dilation): | |
mask_size = int(input_size) | |
mask_expansion = int(mask_expansion) | |
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(input_image)) | |
segmentation_result = segmenter.segment(image) | |
category_mask = segmentation_result.category_mask | |
category_mask_np = category_mask.numpy_view() | |
if category == "hair": | |
target_mask = get_hair_mask(category_mask_np, mask_dilation) | |
elif category == "clothes": | |
target_mask = get_clothes_mask(category_mask_np, mask_dilation) | |
elif category == "face": | |
target_mask = get_face_mask(category_mask_np, mask_dilation) | |
else: | |
target_mask = get_face_mask(category_mask_np, mask_dilation) | |
croper = Croper(input_image, target_mask, mask_size, mask_expansion) | |
croper.corp_mask_image() | |
origin_area_image = croper.resized_square_image | |
return origin_area_image, croper | |
def get_face_mask(category_mask_np, dilation=1): | |
face_skin_mask = category_mask_np == 3 | |
if dilation > 0: | |
face_skin_mask = binary_dilation(face_skin_mask, iterations=dilation) | |
return face_skin_mask | |
def get_clothes_mask(category_mask_np, dilation=1): | |
body_skin_mask = category_mask_np == 2 | |
clothes_mask = category_mask_np == 4 | |
combined_mask = np.logical_or(body_skin_mask, clothes_mask) | |
combined_mask = binary_dilation(combined_mask, iterations=4) | |
if dilation > 0: | |
combined_mask = binary_dilation(combined_mask, iterations=dilation) | |
return combined_mask | |
def get_hair_mask(category_mask_np, dilation=1): | |
hair_mask = category_mask_np == 1 | |
if dilation > 0: | |
hair_mask = binary_dilation(hair_mask, iterations=dilation) | |
return hair_mask | |
def get_restore_mask_image(croper, category, generated_image): | |
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(generated_image)) | |
segmentation_result = segmenter.segment(image) | |
category_mask = segmentation_result.category_mask | |
category_mask_np = category_mask.numpy_view() | |
if category == "hair": | |
target_mask = get_hair_mask(category_mask_np, 0) | |
elif category == "clothes": | |
target_mask = get_clothes_mask(category_mask_np, 0) | |
elif category == "face": | |
target_mask = get_face_mask(category_mask_np, 0) | |
combined_mask = np.logical_or(target_mask, croper.corp_mask) | |
mask_image = Image.fromarray((combined_mask * 255).astype(np.uint8)) | |
return mask_image |