import os import torch import cv2 import numpy as np from PIL import Image from gfpgan.utils import GFPGANer from basicsr.archs.srvgg_arch import SRVGGNetCompact from realesrgan.utils import RealESRGANer os.system("pip freeze") if not os.path.exists('GFPGANv1.4.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") if not os.path.exists('realesr-general-x4v3.pth'): os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") os.makedirs('output', exist_ok=True) model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') model_path = 'realesr-general-x4v3.pth' half = True if torch.cuda.is_available() else False upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=1, arch='clean', channel_multiplier=2) def enhance_image( pil_image: Image, enhance_face: bool = True, ): img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) h, w = img.shape[0:2] if h < 300: img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) if enhance_face: _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=True, paste_back=True) else: output, _ = upsampler.enhance(img, outscale=2) pil_output = Image.fromarray(cv2.cvtColor(output, cv2.COLOR_BGR2RGB)) return pil_output