import spaces import gradio as gr import time import torch from PIL import Image from segment_utils import( segment_image, restore_result, ) from enhance_utils import enhance_image from inversion_run_adapter import run as adapter_run DEFAULT_SRC_PROMPT = "a woman" DEFAULT_EDIT_PROMPT = "a woman, with black lips, 8k, high quality" DEFAULT_CATEGORY = "face" device = "cuda" if torch.cuda.is_available() else "cpu" @spaces.GPU(duration=15) def image_to_image( input_image: Image, input_image_prompt: str, edit_prompt: str, seed: int, w1: float, num_steps: int, start_step: int, guidance_scale: float, generate_size: int, lineart_scale: float, canny_scale: float, lineart_detect: float, canny_detect: float, ): w2 = 1.0 run_task_time = 0 time_cost_str = '' run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) run_model = adapter_run generated_image = run_model( input_image, input_image_prompt, edit_prompt, generate_size, seed, w1, w2, num_steps, start_step, guidance_scale, lineart_scale, canny_scale, lineart_detect, canny_detect, ) run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) enhanced_image = enhance_image(generated_image, False) run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) return enhanced_image, generated_image, time_cost_str def get_time_cost(run_task_time, time_cost_str): now_time = int(time.time()*1000) if run_task_time == 0: time_cost_str = 'start' else: if time_cost_str != '': time_cost_str += f'-->' time_cost_str += f'{now_time - run_task_time}' run_task_time = now_time return run_task_time, time_cost_str def create_demo() -> gr.Blocks: with gr.Blocks() as demo: croper = gr.State() with gr.Row(): with gr.Column(): input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT) edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) with gr.Column(): num_steps = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Num Steps") start_step = gr.Slider(minimum=1, maximum=100, value=2, step=1, label="Start Step") with gr.Accordion("Advanced Options", open=False): guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale", visible=True) generate_size = gr.Number(label="Generate Size", value=1024) mask_expansion = gr.Number(label="Mask Expansion", value=10, visible=True) mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation") lineart_scale = gr.Slider(minimum=0, maximum=5, value=1.6, step=0.1, label="Lineart Weights", visible=True) canny_scale = gr.Slider(minimum=0, maximum=5, value=0.8, step=0.1, label="Canny Weights", visible=True) lineart_detect = gr.Number(label="Lineart Detect", value=0.375, visible=True) canny_detect = gr.Number(label="Canny Detect", value=0.375, visible=True) with gr.Column(): seed = gr.Number(label="Seed", value=8) w1 = gr.Number(label="W1", value=2.5) g_btn = gr.Button("Edit Image") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") with gr.Column(): restored_image = gr.Image(label="Restored Image", type="pil", interactive=False) download_path = gr.File(label="Download the output image", interactive=False) with gr.Column(): origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False) enhanced_image = gr.Image(label="Enhanced Image", type="pil", interactive=False) generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) generated_image = gr.Image(label="Generated Image", type="pil", interactive=False) g_btn.click( fn=segment_image, inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], outputs=[origin_area_image, croper], ).success( fn=image_to_image, inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, lineart_scale, canny_scale, lineart_detect, canny_detect], outputs=[enhanced_image, generated_image, generated_cost], ).success( fn=restore_result, inputs=[croper, category, enhanced_image], outputs=[restored_image, download_path], ) return demo